Math 3345 Bonus Problems \#1

The following bonus problems are worth extra credit, which will be holistically incorporated into your final grade computation.
These bonus problems are not a substitute for the ordinary homework assignments. Rather, you should view these problems as an optional insurance policy on your final course grade. You may turn in any number of these problems, individually or in batches, at any time but no later than Monday, November 15.

1. We define a logical connective \downarrow as follows: $P \downarrow Q$ is true when both P and Q are false, and it is false otherwise. (We read $P \downarrow Q$ as " P nor Q ").
(a) Write a truth table for $P \downarrow Q$ and check that $P \downarrow Q$ is logically equivalent to $\neg(P \vee Q)$.
(b) Check that $P \downarrow Q \equiv Q \downarrow P$. That is, \downarrow is commutative.
(c) Show that $(P \downarrow Q) \downarrow R$ and $P \downarrow(Q \downarrow R)$ are logically inequivalent. That is, \downarrow is not associative.
(d) Show that the logical connectives \neg, \wedge, and \vee can each be expressed in terms of \downarrow without using any other logical connectives. Specifically, prove the following:
i. $\neg P \equiv(P \downarrow P)$.
ii. $P \wedge Q \equiv(P \downarrow P) \downarrow(Q \downarrow Q)$.
iii. $P \vee Q \equiv(P \downarrow Q) \downarrow(P \downarrow Q)$.
(e) Prove that the logical connective \Rightarrow can be expressed in terms of \downarrow without using any other logical connectives.
2. Let a be an odd integer. Prove by induction that $a^{2^{n}}-1$ is divisible by 2^{n+1} for every integer $n \geq 0$.
3. Let P denote the following sentence:

Let $n, d, p \in \mathbb{Z}$ be integers such that $d>0$ and p is prime. If d divides n and d divides $n+p$, then $d=1$ or p divides n.
(a) Write P as a logical sentence using quantifiers (\forall, \exists) and logical connectives (\wedge, \vee, \Rightarrow, etc.).
(b) Write the negation $\neg P$.
(c) Which statement is true, P or $\neg P$? Prove the true statement.
4. For $n, k \in \mathbb{Z}$ such that $0 \leq k \leq n$, define

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

(a) Prove that $\binom{n}{0}=1,\binom{n}{n}=1$, and

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} \quad \text { if } \quad 1 \leq k \leq n-1
$$

(b) Use part (a) and induction to prove that $\binom{n}{k}$ is a positive integer for all $n, k \in \mathbb{Z}$ such that $0 \leq k \leq n$.
(c) Let $x, y \in \mathbb{R}$. Prove that for every integer $n \geq 0$,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

5. The Archimedean Property of the real numbers is the following statement:

For every $x, y \in \mathbb{R}$ such that $x>0$ and $y>0$, there exists $n \in \mathbb{N}$ such that $n x>y$.
(a) Show that, for every $a \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that $n>a$. That is, \mathbb{N} is not bounded above. [Hint: Proceed by contradiction, and use the Least Upper Bound Property of \mathbb{R}.]
(b) Use part (a) to prove that the Archimedean Property is true.
(c) Use the Archimedean Property to prove that for every $x \in \mathbb{R}$ such that $x>0$, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<x$.
(d) Prove that there is a rational number between any two real numbers. That is, for every $a, b \in \mathbb{R}$ with $a<b$, there exists $q \in \mathbb{Q}$ such that $a<q<b$. [Hint: Start by using part (c) to find a denominator for q. Then, use the Well-Ordering Axiom to choose a numerator for q.]
6. Let $a, b, c \in \mathbb{Z}$ be integers with a and b not both 0 . Let $d=\operatorname{gcd}(a, b)$.
(a) Prove that there exist $x, y \in \mathbb{Z}$ such that

$$
a x+b y=c
$$

if and only if d divides c.
(b) Suppose there exist $x_{0}, y_{0} \in \mathbb{Z}$ such that

$$
a x_{0}+b y_{0}=c .
$$

Show that for every $k \in \mathbb{Z}$, the numbers

$$
x=x_{0}+\frac{k b}{d} \quad \text { and } \quad y=y_{0}-\frac{k a}{d}
$$

are integers and $a x+b y=c$.
(c) Suppose still that $x_{0}, y_{0} \in \mathbb{Z}$ satisfy

$$
a x_{0}+b y_{0}=c .
$$

Show that if $x, y \in \mathbb{Z}$ satisfies the equation $a x+b y=c$, then

$$
x=x_{0}+\frac{k b}{d} \quad \text { and } \quad y=y_{0}-\frac{k a}{d}
$$

for some $k \in \mathbb{Z}$.
(d) Use the results from parts (a)-(c) to explain why the equation

$$
18 x+42 y=30
$$

has integer solutions, and find all integer solutions $x, y \in \mathbb{Z}$.

