MATH 3345 BONUS PROBLEMS #1

The following bonus problems are worth extra credit, which will be **holistically** incorporated into your final grade computation.

These bonus problems are not a substitute for the ordinary homework assignments. Rather, you should view these problems as an optional insurance policy on your final course grade .

You may turn in any number of these problems, individually or in batches, at any time but no later than Monday, November 15.

- 1. We define a logical connective \downarrow as follows: $P \downarrow Q$ is true when both P and Q are false, and it is false otherwise. (We read $P \downarrow Q$ as "P nor Q").
 - (a) Write a truth table for $P \downarrow Q$ and check that $P \downarrow Q$ is logically equivalent to $\neg (P \lor Q)$.
 - (b) Check that $P \downarrow Q \equiv Q \downarrow P$. That is, \downarrow is commutative.
 - (c) Show that $(P \downarrow Q) \downarrow R$ and $P \downarrow (Q \downarrow R)$ are logically inequivalent. That is, \downarrow is not associative.
 - (d) Show that the logical connectives \neg , \wedge , and \lor can each be expressed in terms of \downarrow without using any other logical connectives. Specifically, prove the following:
 - i. $\neg P \equiv (P \downarrow P)$.
 - ii. $P \land Q \equiv (P \downarrow P) \downarrow (Q \downarrow Q).$
 - iii. $P \lor Q \equiv (P \downarrow Q) \downarrow (P \downarrow Q)$.
 - (e) Prove that the logical connective \Rightarrow can be expressed in terms of \downarrow without using any other logical connectives.
- 2. Let a be an odd integer. Prove by induction that $a^{2^n} 1$ is divisible by 2^{n+1} for every integer $n \ge 0$.
- 3. Let P denote the following sentence:

Let $n, d, p \in \mathbb{Z}$ be integers such that d > 0 and p is prime. If d divides n and d divides n + p, then d = 1 or p divides n.

- (a) Write P as a logical sentence using quantifiers (\forall, \exists) and logical connectives $(\land, \lor, \Rightarrow, \text{etc.})$.
- (b) Write the negation $\neg P$.
- (c) Which statement is true, P or $\neg P$? Prove the true statement.

4. For $n, k \in \mathbb{Z}$ such that $0 \le k \le n$, define

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

(a) Prove that $\binom{n}{0} = 1$, $\binom{n}{n} = 1$, and

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} \quad \text{if} \quad 1 \le k \le n-1.$$

- (b) Use part (a) and induction to prove that $\binom{n}{k}$ is a positive integer for all $n, k \in \mathbb{Z}$ such that $0 \le k \le n$.
- (c) Let $x, y \in \mathbb{R}$. Prove that for every integer $n \ge 0$,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k,$$

5. The Archimedean Property of the real numbers is the following statement:

For every $x, y \in \mathbb{R}$ such that x > 0 and y > 0, there exists $n \in \mathbb{N}$ such that nx > y.

- (a) Show that, for every $a \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that n > a. That is, \mathbb{N} is not bounded above. [HINT: Proceed by contradiction, and use the Least Upper Bound Property of \mathbb{R} .]
- (b) Use part (a) to prove that the Archimedean Property is true.
- (c) Use the Archimedean Property to prove that for every $x \in \mathbb{R}$ such that x > 0, there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < x$.
- (d) Prove that there is a rational number between any two real numbers. That is, for every $a, b \in \mathbb{R}$ with a < b, there exists $q \in \mathbb{Q}$ such that a < q < b. [HINT: Start by using part (c) to find a denominator for q. Then, use the Well-Ordering Axiom to choose a numerator for q.]

- 6. Let $a, b, c \in \mathbb{Z}$ be integers with a and b not both 0. Let d = gcd(a, b).
 - (a) Prove that there exist $x, y \in \mathbb{Z}$ such that

$$ax + by = c$$

if and only if d divides c.

(b) Suppose there exist $x_0, y_0 \in \mathbb{Z}$ such that

$$ax_0 + by_0 = c.$$

Show that for every $k \in \mathbb{Z}$, the numbers

$$x = x_0 + \frac{kb}{d}$$
 and $y = y_0 - \frac{ka}{d}$

are integers and ax + by = c.

(c) Suppose still that $x_0, y_0 \in \mathbb{Z}$ satisfy

$$ax_0 + by_0 = c.$$

Show that if $x, y \in \mathbb{Z}$ satisfies the equation ax + by = c, then

$$x = x_0 + \frac{kb}{d}$$
 and $y = y_0 - \frac{ka}{d}$

for some $k \in \mathbb{Z}$.

(d) Use the results from parts (a)–(c) to explain why the equation

$$18x + 42y = 30$$

has integer solutions, and find all integer solutions $x, y \in \mathbb{Z}$.