Math 3345 Bonus Problems \#2

The following bonus problems are worth extra credit, which will be holistically incorporated into your final grade computation.
These bonus problems are not a substitute for the ordinary homework assignments. Rather, you should view these problems as an optional insurance policy on your final course grade . You may turn in any number of these problems, individually or in batches, at any time but no later than Thursday, December 16. Please submit them in to my office (MW 756) or by email in a single .pdf file.

1. For sets A and B, define

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

(a) Let A and B be sets. Prove that $A=B$ if and only if $A \Delta B=\emptyset$.
(b) Let A and B be sets. Prove that $A \Delta B=B \Delta A$.
(c) Let A, B, and C be sets. Prove that $(A \Delta B) \Delta C=A \Delta(B \Delta C)$.
2. For each $n \in \mathbb{N}$, define $A_{n}=\left[0,1+\frac{1}{n}\right]$ and $B_{n}=\left[0,1-\frac{1}{n}\right]$.
(a) Prove that $\bigcup_{n=1}^{\infty} A_{n}$ is an interval, and describe this interval explicitly.
(b) Prove that $\bigcap_{n=1}^{\infty} A_{n}$ is an interval, and describe this interval explicitly.
(c) Prove that $\bigcup_{n=1}^{\infty} B_{n}$ is an interval, and describe this interval explicitly.
(d) Prove that $\bigcap_{n=1}^{\infty} B_{n}$ is an interval, and describe this interval explicitly.
3. Define a function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ by

$$
f(m, n)=(5 m+4 n, 4 m+3 n)
$$

Prove that f is a bijection and give a formula for its inverse function.
4. (a) Find a bijection $f:(0, \pi) \rightarrow \mathbb{R}$ or prove that no such bijection exists.
(b) Find a bijection $g:[0, \pi] \rightarrow \mathbb{R}$ or prove that no such bijection exists.
5. Let A be an infinite set. Prove that there exists an injective function $f: \mathbb{N} \rightarrow A$.

