REAL AND RATIONAL NUMBERS

1. Axioms for the Real Numbers

The set of real nubers, denoted \mathbb{R}, has the following properties:

1. (Operations) There are binary operations + (addition) and \cdot (multiplication), which take pairs of elements of \mathbb{R} to elements of \mathbb{R},
2. (Commutativity) For all $a, b \in \mathbb{R}$,

$$
a+b=b+a \quad \text { and } \quad a \cdot b=b \cdot a .
$$

3. (Associativity) For all $a, b, c \in \mathbb{R}$,

$$
a+(b+c)=(a+b)+c \quad \text { and } \quad a \cdot(b \cdot c)=(a \cdot b) \cdot c .
$$

4. (Distributive Law) For all $a, b, c \in \mathbb{R}$,

$$
a \cdot(b+c)=a \cdot b+a \cdot c .
$$

5. (Identity) There are elements $0,1 \in \mathbb{R}$ such that for all $a \in \mathbb{R}$,

$$
a+0=a \quad \text { and } \quad a \cdot 1=a .
$$

Moreover, $0 \neq 1$.
6. (Additive Inverses) For each $a \in \mathbb{R}$, there exists $-a \in \mathbb{R}$ such that

$$
a+(-a)=0 .
$$

We write $b-a$ to mean $b+(-a)$.
7. (Multiplicative Inverses) For each $a \in \mathbb{R}$ such that $a \neq 0$, there exists $a^{-1} \in \mathbb{R}$ such that

$$
a \cdot a^{-1}=1
$$

We write $\frac{b}{a}$ to mean $b \cdot a^{-1}$.
8. (Positive Integers) There is a subset $\mathbb{R}_{>0}$ of \mathbb{R} which we call the positive real numbers. We write $a<b$ when $b-a \in \mathbb{R}_{>0}$.
9. (Positive Closure) For all $a, b \in \mathbb{R}_{>0}$,

$$
a+b \in \mathbb{R}_{>0} \quad \text { and } \quad a \cdot b \in \mathbb{R}_{>0} .
$$

10. (Trichotomy) For every $a \in \mathbb{R}$, exactly one of the the following is true:
(i) $a \in \mathbb{R}_{>0}$, or
(ii) $a=0$, or
(iii) $-a \in \mathbb{R}_{>0}$.
11. (Least Upper Bound Property) Every non-empty subset of \mathbb{R} which has an upper bound has a least upper bound in \mathbb{R}.

These properties are axioms, meaning that we declare them to be true without proof.

2. BASIC CONSEQUENCES OF THE AXIOMS

Notice that many of the axioms for \mathbb{R} also appeared in the list of axioms for the integers \mathbb{Z}. As a result, many of the basic facts we proved about \mathbb{Z} are also true for \mathbb{R}. We collect these below.

Lemma 1. For all $a, b, c \in \mathbb{R}$, we have the following:
(a) (Additive Cancellation Property) If $a+b=a+c$, then $b=c$.
(b) (Uniqueness of Additive Inverses) If $a+b=0$, then $b=-a$.
(c) $a \cdot 0=0$.
(d) If $a \cdot b=0$, then $a=0$ or $b=0$.
(e) $-(-a)=a$.
(f) $-a=(-1) \cdot a$.
(g) (Multiplicative Cancellation Property) If $a \neq 0$ and $a \cdot b=a \cdot c$, then $b=c$.
(h) The multiplicative identity 1 is an element of $\mathbb{R}_{>0}$.
(i) Exactly one of the following is true:
(i) $a<b$, or
(ii) $a=b$, or
(iii) $b<a$.
(j) If $a<b$, then $a+c<b+c$.
(k) If $a<b$ and $0<c$, then $a \cdot c<b \cdot c$.

Proof. The proofs of these statements are identical to the proofs of the analogous statements for \mathbb{Z}. See the Integers handout for details.

The Multiplicative Inverses axiom guarantees that each non-zero real number has a multiplicative inverse. This is significantly different from the integers, where only 1 and -1 have multiplicative inverses. In the next lemma, we record some basic properties of multiplicative inverses.

Lemma 2. For all $a, b \in \mathbb{R}$ such that $a \neq 0$ and $b \neq 0$, we have the following:
(a) (Uniqueness of Multiplicative Inverses) If $a \cdot b=1$, then $b=a^{-1}$.
(b) $\left(a^{-1}\right)^{-1}=a$
(c) $(a \cdot b)^{-1}=a^{-1} \cdot b^{-1}$
(d) $(-a)^{-1}=-a^{-1}$
(e) $a>0$ if and only if $a^{-1}>0$.

Proof. Let $a, b \in \mathbb{R}$ with $a \neq 0$ and $b \neq 0$.
(a) Suppose $a \cdot b=1$. We also know that $a \cdot a^{-1}=1$, so $a \cdot b=a \cdot a^{-1}$. By the Multiplicative Cancellation Property (Lemma $1(\mathrm{~g})$), we conclude that $b=a^{-1}$.
(b) By the Multiplicative Inverses axiom (and Commutativity), $a^{-1} \cdot a=1$. Thus, by Uniqueness of Mutliplicative Inverses, we have $a=\left(a^{-1}\right)^{-1}$.
(c) By the Multiplicative Inverses, Commutativity, and Associativity axioms, we have

$$
(a \cdot b) \cdot\left(a^{-1} \cdot b^{-1}\right)=\left(a \cdot a^{-1}\right) \cdot\left(b \cdot b^{-1}\right)=1 \cdot 1=1 .
$$

Therefore, by Uniqueness of Multiplicative Inverses, $a^{-1} \cdot b^{-1}=(a \cdot b)^{-1}$.
(d) Observe that $(-1) \cdot(-1)=-(-1)=1$ by Lemma 1 parts (e) and (f). Therefore, $(-1)^{-1}=-1$ by Uniqueness of Multiplicative Inverses. Thus,

$$
\left.(-a)^{-1}=((-1) \cdot a)\right)^{-1}=(-1)^{-1} \cdot a^{-1}=-a^{-1}
$$

by part (c).
(e) Suppose $a>0$. By the Trichotomy axiom, exactly one of the following possibilities holds true: $a^{-1}>0$ or $a^{-1}=0$ or $-a^{-1}>0$.

We cannot have $a^{-1}=0$, because this would imply $1=a \cdot a^{-1}=a \cdot 0=0$ by Lemma 1 (c), which contradicts the fact that $1 \neq 0$ by the Identity axiom.

Assume, for the sake of contradiction, that $-a^{-1}>0$. Then the Positive Closure axiom implies that

$$
a \cdot\left(-a^{-1}\right)=a \cdot(-1) \cdot a^{-1}=(-1) \cdot\left(a \cdot a^{-1}\right)=-1 \cdot 1=-1
$$

is an element of $\mathbb{R}_{>0}$; that is, $-1>0$. But this contradicts the Trichotomy axiom, because $1>0$ by Lemma 1 (h).

Thus, we have shown that $a^{-1}>0$ if $a>0$.
Conversely, if $a^{-1}>0$, then we apply the same argument to get that $\left(a^{-1}\right)^{-1}>0$. But $\left(a^{-1}\right)^{-1}=a$ by part (b), and so $a>0$.

3. Division and Rational Numbers

Unsurprisingly, the real numbers contain the integers.
Theorem 3. Every integer is in \mathbb{R}.
Proof. By the Trichotomy axiom for \mathbb{Z}, the integers consist of the natural numbers, 0, and the additive inverses of the natural numbers.

First, we know that $0 \in \mathbb{R}$ by the Identity axiom.
Next, we show that the natural numbers \mathbb{N} are contained in \mathbb{R}. We proceed by induction. As the base case, $1 \in \mathbb{R}$ by the Identity axiom. Now, let $n \in \mathbb{N}$ be a natural number and suppose that $n \in \mathbb{R}$. Then $n+1 \in \mathbb{R}$ because the sum of two real numbers is a real number. This completes the inductive proof, showing that every natural number is in \mathbb{R}.

Finally, for each natural number $n \in \mathbb{N}$, since n is in \mathbb{R}, the additive inverse $-n$ is a real number by the Additive Inverses axiom for \mathbb{R}.

By thinking of the integers as living inside the real numbers, we may now divide integers to get "fractions," or rational numbers.

Definition. A real number $x \in \mathbb{R}$ is a rational number if there exist integers $a, b \in \mathbb{Z}$ such that $b \neq 0$ and $x=a \cdot b^{-1}$. We write $x=\frac{a}{b}$, and say that $\frac{a}{b}$ is a fraction representing the rational number x. The numerator of $\frac{a}{b}$ is a and the denominator of $\frac{a}{b}$ is b. The set of all rational numbers is denoted \mathbb{Q}.

Remark. Every integer n is a rational number, because $n=\frac{n}{1} \in \mathbb{Q}$.

Remark. A rational number may be represented by (infinitely) many fractions. Specifically, we have $\frac{a}{b}=\frac{c}{d}$ if and only if $a \cdot b^{-1}=c \cdot d^{-1}$ if and only if $a d=b c$.
Lemma 4. For all $x, y \in \mathbb{Q}$, we have the following:
(a) $x+y \in \mathbb{Q}$
(b) $x-y \in \mathbb{Q}$
(c) $x \cdot y \in \mathbb{Q}$
(d) If $y \neq 0$, then $x \cdot y^{-1} \in \mathbb{Q}$.

Proof. We prove (a) and leave (b)-(d) as exercises.
Since x and y are rational numbers, there exist $a, b, c, d \in \mathbb{Z}$ such that $b \neq 0, d \neq 0$, and $x=\frac{a}{b}$ and $y=\frac{c}{d}$. Then

$$
x+y=\frac{a}{b}+\frac{c}{d}=a \cdot b^{-1}+c \cdot d^{-1} .
$$

Now, clearing denominators, we see that

$$
b d(x+y)=b d\left(a \cdot b^{-1}+c \cdot d^{-1}\right)=a d+b c .
$$

Multiplying by $(b d)^{-1}$ on both sides yields

$$
x+y=(a d+b c) \cdot(b d)^{-1} .
$$

Notice that $a d+b c$ and $b d$ are integers, and $b d \neq 0$ because $b \neq 0$ and $d \neq 0$. Thus, we have shown that $x+y=\frac{a d+b c}{b d}$ is a rational number.

The next lemma shows that we may always write a rational number as a fraction with a positive denominator.
Lemma 5. Let $x \in \mathbb{Q}$. Then there exists $m \in \mathbb{Z}$ and $n \in \mathbb{N}$ such that $x=\frac{m}{n}$.
Proof. By definition of rational numbers, there exist $a, b \in \mathbb{Z}$ with $b \neq 0$ such that $x=\frac{a}{b}$. If $b>0$, then we may set $m=a$ and $n=b$ and we are done.

Otherwise, $b<0$. Then $-b>0$. Since $x=\frac{a}{b}=\frac{-a}{-b}$, we set $m=-a$ and $n=-b$.
We now set out to show that each rational number can be written in lowest terms.
Definition. A fraction $\frac{a}{b}$ is in lowest terms if for every $d \in \mathbb{N}$, if $d \mid a$ and $d \mid b$, then $d=1$.
Example. The fractions $\frac{2}{3}$ and $\frac{10}{15}$ are representations of the same rational number (because crossmultiplying gives $2 \cdot 15=3 \cdot 10$. The representation $\frac{2}{3}$ is in lowest terms, while $\frac{10}{15}$ is not.

In order to prove that any rational number x can be represented in lowest terms, we will focus on the denominators that show up in the representations of x as fractions. The representation in lowest terms will be the fraction with the smallest denominator. The following definition is useful in making this precise.

Definition. Let $x \in \mathbb{Q}$. A possible positive denominator for x is a positive integer $n \in \mathbb{N}$ such that there exists $m \in \mathbb{Z}$ with $x=\frac{m}{n}$.
Example. The rational number $\frac{2}{3}$ may be represented as $\frac{4}{6}, \frac{6}{9}$, and $\frac{10}{15}$ (among infinitely many other fractions). So $3,6,9$, and 15 are some of the possible positive denominators for this rational number.

Theorem 6. Let $x \in \mathbb{Q}$. There exist $m \in \mathbb{Z}$ and $n \in \mathbb{N}$ such that $x=\frac{m}{n}$ and $\frac{m}{n}$ is in lowest terms.
Proof. Let S be the set of all possible positive denominators of x. By Lemma $5, x$ has at least one possible positive denominator, and so S is a non-empty subset of \mathbb{N}. By the Well-Ordering Principle, the set S has a least element n. Then there exists $m \in \mathbb{Z}$ such that $x=\frac{m}{n}$.

We claim that $\frac{m}{n}$ is in lowest terms. For the sake of contradiction, assume it is not. Then there is some $d \in \mathbb{N}$ such that $d|m, d| n$, and $d \neq 1$. Thus, there exist integers k and ℓ such that

$$
m=d k \quad \text { and } \quad n=d \ell
$$

Therefore,

$$
x=\frac{m}{n}=\frac{d k}{d \ell}=\frac{k}{\ell}
$$

Because $n, d \in \mathbb{N}$, we have $\ell \in \mathbb{N}$ as well. Moreover, since $d \neq 1$, we have $d>1$. Hence, $\ell<n$. This shows that ℓ is a possible positive denominator for x which is smaller than n, a contradiction.

It follows that $\frac{m}{n}$ is in lowest terms.

4. Least Upper Bounds

The Least Upper Bound Property is perhaps the most subtle of the axioms for \mathbb{R}, but it captures the fundamental nature of the real numbers. Indeed, the standard picture of the real numbers as a "continuum" along a number line rests on this axiom. You will learn more about this axiom in a real analysis course. Here, we will only try to give an idea of what it is and how it is used.

Let S be a subset of the real numbers. A real number a is called an upper bound of S if $x \leq a$ for all $x \in S$. A real number a is called a least upper bound of S if a is an upper bound of S and for all upper bounds b of $S, a \leq b$.

Lemma 7. Let S be a subset of \mathbb{R}. The least upper bound of S, if it exists, is unique.
Proof. Suppose a and b are both least upper bounds of S. Then, in particular, b is an upper bound of S, so by the fact that a is a least upper bound we get $a \leq b$. Similarly, a is an upper bound of S, and so the fact that b is a least upper bound implies that $b \leq a$. Therefore, $a=b$.

The Least Upper Bound Property guarantees that any (non-empty) set of real numbers which has an upper bound has a least upper bound in \mathbb{R}. As the following example illustrates, the least upper bound of a set may or may not be an element of the set.

Example. Let $S=[0,1]$ be the set of all real numbers x satisfying $0 \leq x \leq 1$, and let $T=(0,1)$ be the set of all real numbers x satisfying $0<x<1$. Then $a \in \mathbb{R}$ is an upper bound for S if and only if a is an upper bound for T if and only if $a \geq 1$. The number 1 is the least upper bound of both sets. Notice that $1 \in S$ but $1 \notin T$.

Example. Let S be the set of all rational numbers x such that $x^{2} \leq 2$. Notice that $1 \in S$, and so S is non-empty. We can see also that 2 is an upper bound for S. Indeed, if $x>2$, then $x^{2}>4>2$, so $x \notin S$. By contrapositive, if $x \in S$ then $x \leq 2$.

Therefore, the Least Upper Bound Property implies that S has a least upper bound $a \in \mathbb{R}$. One can show that $a^{2}=2$; that is, $a=\sqrt{2}$. (You do this by contradiction: If $a^{2}<2$, then a cannot be an upper bound; if $a^{2}>2$, then a will be an upper bound which is not the least upper bound.)

This shows that $\sqrt{2} \in \mathbb{R}$. It turns out (as we will soon prove) that there is no rational number a such that $a^{2}=2$. Thus, this example also shows that \mathbb{Q} does not satisfy the Least Upper Bound Property.

