Math 3345 Bonus Problems

The following bonus problems are worth extra credit, which will be added to the homework component of your course grade (not to exceed 100\%).

Each problem is worth up to 5 points. Full credit will only be awarded to solutions which are complete, correct, and readable.
You may turn in solutions to any number of these problems, individually or in batches, at any time but no later than Monday, November 28.

1. We define a logical connective \downarrow as follows: $P \downarrow Q$ is true when both P and Q are false, and it is false otherwise. (We read $P \downarrow Q$ as " P nor Q ").
(a) Write a truth table for $P \downarrow Q$ and check that $P \downarrow Q$ is logically equivalent to $\neg(P \vee Q)$.
(b) Check that $P \downarrow Q \equiv Q \downarrow P$. That is, \downarrow is commutative.
(c) Show that $(P \downarrow Q) \downarrow R$ and $P \downarrow(Q \downarrow R)$ are logically inequivalent. That is, \downarrow is not associative.
(d) Show that the logical connectives \neg, \wedge, and \vee can each be expressed entirely in terms of \downarrow, without using any other logical connectives. Specifically, prove the following:
i. $\neg P \equiv(P \downarrow P)$.
ii. $P \wedge Q \equiv(P \downarrow P) \downarrow(Q \downarrow Q)$.
iii. $P \vee Q \equiv(P \downarrow Q) \downarrow(P \downarrow Q)$.
(e) Prove that the logical connective \Rightarrow can be expressed entirely in terms of \downarrow. That is, show that the sentence $P \Rightarrow Q$ is logically equivalent to a sentence involving \downarrow and no other logical connectives.
2. Provide three proofs of the logical equivalence $P \Leftrightarrow Q \equiv(P \wedge Q) \vee(\neg P \wedge \neg Q)$:
(a) Prove the logical equivalence using a truth table.
(b) Prove the logical equivalence using a symbolic argument. [HINT: Start with the right-hand side $(P \wedge Q) \vee(\neg P \wedge \neg Q)$ and expand it using two applications of the Distributive Laws.]
(c) Prove the logical equivalence using an explanation in words.
3. Let a be an odd integer. Prove by induction that $a^{2^{n}}-1$ is divisible by 2^{n+1} for every integer $n \geq 0$.
4. Let P denote the following sentence:

Let $n, d, p \in \mathbb{Z}$ be integers such that $d>0$ and p is prime. If d divides n and d divides $n+p$, then $d=1$ or p divides n.
(a) Write P as a logical sentence using quantifiers (\forall, \exists) and logical connectives (\wedge, \vee, \Rightarrow, etc.).
(b) Write the negation $\neg P$.
(c) Which statement is true, P or $\neg P$? Prove the true statement.
5. For $n, k \in \mathbb{Z}$ such that $0 \leq k \leq n$, define

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Note that, by convention, $0!=1$.
(a) Prove that $\binom{n}{0}=1,\binom{n}{n}=1$, and

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} \quad \text { if } \quad 1 \leq k \leq n-1
$$

(b) Use part (a) and induction to prove that $\binom{n}{k}$ is a positive integer for all $n, k \in \mathbb{Z}$ such that $0 \leq k \leq n$.
(c) Let $x, y \in \mathbb{R}$. Prove that for every integer $n \geq 0$,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k},
$$

6. The Archimedean Property of the real numbers is the following statement:

For every $x, y \in \mathbb{R}$ such that $x>0$ and $y>0$, there exists $n \in \mathbb{N}$ such that $n x>y$.
(a) Prove that for every $a \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that $n>a$. That is, \mathbb{N} is not bounded above. [HINT: Proceed by contradiction, and use the Least Upper Bound Property of \mathbb{R}.]
(b) Use part (a) to prove that the Archimedean Property is true.
(c) Use the Archimedean Property to prove that for every $x \in \mathbb{R}$ such that $x>0$, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<x$.
(d) Prove that there is a rational number between any two real numbers. That is, for every $a, b \in \mathbb{R}$ with $a<b$, there exists $q \in \mathbb{Q}$ such that $a<q<b$. [HINT: Start by using part (c) to find a denominator for q. Then, use the Well-Ordering Axiom to choose a numerator for q.]
7. Let $a, b, c \in \mathbb{Z}$ be integers with a and b not both 0 . Let $d=\operatorname{gcd}(a, b)$.
(a) Prove that there exist $x, y \in \mathbb{Z}$ such that

$$
a x+b y=c
$$

if and only if d divides c.
(b) Suppose there exist $x_{0}, y_{0} \in \mathbb{Z}$ such that

$$
a x_{0}+b y_{0}=c
$$

Show that for every $k \in \mathbb{Z}$, the numbers

$$
x=x_{0}+\frac{k b}{d} \quad \text { and } \quad y=y_{0}-\frac{k a}{d}
$$

are integers and $a x+b y=c$.
(c) Suppose still that $x_{0}, y_{0} \in \mathbb{Z}$ satisfy

$$
a x_{0}+b y_{0}=c
$$

Show that if $x, y \in \mathbb{Z}$ satisfies the equation $a x+b y=c$, then

$$
x=x_{0}+\frac{k b}{d} \quad \text { and } \quad y=y_{0}-\frac{k a}{d}
$$

for some $k \in \mathbb{Z}$.
(d) Use the results from parts (a)-(c) to explain why the equation

$$
18 x+42 y=30
$$

has integer solutions, and find all integer solutions $x, y \in \mathbb{Z}$.
8. Let p be an integer such that $p \geq 2$. Suppose that for all $x, y \in \mathbb{Z}$, if $p \mid x y$ then $p \mid x$ or $p \mid y$. Prove that p is prime. (This is the converse of the "Theorem on Division by a Prime.")
9. (a) Let $x \in \mathbb{Q}$. Prove that if $x^{3} \in \mathbb{Z}$, then $x \in \mathbb{Z}$.
(b) Let $n \in \mathbb{Z}$. Prove that if n is not a perfect cube (i.e., there is no integer m such that $n=m^{3}$), then $\sqrt[3]{n}$ is irrational.
10. Let $c, n \in \mathbb{N}$. Use the rational roots theorem (see Homework 17) to prove that $\sqrt[n]{c}$ is either an integer or an irrational number. [HINT: Consider the polynomial $x^{n}-c$.]
11. For sets A and B, define

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

(a) Let A and B be sets. Prove that $A=B$ if and only if $A \Delta B=\emptyset$.
(b) Let A and B be sets. Prove that $A \Delta B=B \Delta A$.
(c) Let A, B, and C be sets. Prove that $(A \Delta B) \Delta C=A \Delta(B \Delta C)$.
12. For each $n \in \mathbb{N}$, define $A_{n}=\left[0,1+\frac{1}{n}\right]$ and $B_{n}=\left[0,1-\frac{1}{n}\right]$.
(a) Prove that $\bigcup_{n=1}^{\infty} A_{n}$ is an interval, and describe this interval explicitly.
(b) Prove that $\bigcap_{n=1}^{\infty} A_{n}$ is an interval, and describe this interval explicitly.
(c) Prove that $\bigcup_{n=1}^{\infty} B_{n}$ is an interval, and describe this interval explicitly.
(d) Prove that $\bigcap_{n=1}^{\infty} B_{n}$ is an interval, and describe this interval explicitly.
13. Define a function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ by

$$
f(m, n)=(5 m+4 n, 4 m+3 n) .
$$

Prove that f is a bijection and give a formula for its inverse function.
14. (a) Find a bijection $f:(0, \pi) \rightarrow \mathbb{R}$ or prove that no such bijection exists.
(b) Find a bijection $g:[0, \pi] \rightarrow \mathbb{R}$ or prove that no such bijection exists.
15. Let A be an infinite set. Prove that there exists an injective function $f: \mathbb{N} \rightarrow A$.

