MATH 3345 BONUS PROBLEMS

The following bonus problems are worth extra credit, which will be added to the homework component of your course grade (not to exceed 100%).

Each problem is worth up to 5 points. Full credit will only be awarded to solutions which are **complete**, **correct**, **and readable**.

You may turn in solutions to any number of these problems, individually or in batches, at any time but no later than Monday, November 28.

- 1. We define a logical connective \downarrow as follows: $P \downarrow Q$ is true when both P and Q are false, and it is false otherwise. (We read $P \downarrow Q$ as "P nor Q").
 - (a) Write a truth table for $P \downarrow Q$ and check that $P \downarrow Q$ is logically equivalent to $\neg (P \lor Q)$.
 - (b) Check that $P \downarrow Q \equiv Q \downarrow P$. That is, \downarrow is commutative.
 - (c) Show that $(P \downarrow Q) \downarrow R$ and $P \downarrow (Q \downarrow R)$ are logically inequivalent. That is, \downarrow is not associative.
 - (d) Show that the logical connectives \neg , \wedge , and \vee can each be expressed entirely in terms of \downarrow , without using any other logical connectives. Specifically, prove the following:
 - i. $\neg P \equiv (P \downarrow P)$. ii. $P \land Q \equiv (P \downarrow P) \downarrow (Q \downarrow Q)$. iii. $P \lor Q \equiv (P \downarrow Q) \downarrow (P \downarrow Q)$.
 - (e) Prove that the logical connective \Rightarrow can be expressed entirely in terms of \downarrow . That is, show that the sentence $P \Rightarrow Q$ is logically equivalent to a sentence involving \downarrow and no other logical connectives.
- 2. Provide three proofs of the logical equivalence $P \Leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$:
 - (a) Prove the logical equivalence using a truth table.
 - (b) Prove the logical equivalence using a symbolic argument. [HINT: Start with the right-hand side $(P \land Q) \lor (\neg P \land \neg Q)$ and expand it using two applications of the Distributive Laws.]
 - (c) Prove the logical equivalence using an explanation in words.
- 3. Let a be an odd integer. Prove by induction that $a^{2^n} 1$ is divisible by 2^{n+1} for every integer $n \ge 0$.

4. Let P denote the following sentence:

Let $n, d, p \in \mathbb{Z}$ be integers such that d > 0 and p is prime. If d divides n and d divides n + p, then d = 1 or p divides n.

- (a) Write P as a logical sentence using quantifiers (\forall, \exists) and logical connectives $(\land, \lor, \Rightarrow, \text{etc.})$.
- (b) Write the negation $\neg P$.
- (c) Which statement is true, P or $\neg P$? Prove the true statement.

5. For $n, k \in \mathbb{Z}$ such that $0 \le k \le n$, define

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Note that, by convention, 0! = 1.

(a) Prove that $\binom{n}{0} = 1$, $\binom{n}{n} = 1$, and

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} \quad \text{if} \quad 1 \le k \le n-1.$$

- (b) Use part (a) and induction to prove that $\binom{n}{k}$ is a positive integer for all $n, k \in \mathbb{Z}$ such that $0 \le k \le n$.
- (c) Let $x, y \in \mathbb{R}$. Prove that for every integer $n \geq 0$,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k,$$

6. The Archimedean Property of the real numbers is the following statement:

For every $x, y \in \mathbb{R}$ such that x > 0 and y > 0, there exists $n \in \mathbb{N}$ such that nx > y.

- (a) Prove that for every $a \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that n > a. That is, \mathbb{N} is not bounded above. [HINT: Proceed by contradiction, and use the Least Upper Bound Property of \mathbb{R} .]
- (b) Use part (a) to prove that the Archimedean Property is true.
- (c) Use the Archimedean Property to prove that for every $x \in \mathbb{R}$ such that x > 0, there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < x$.
- (d) Prove that there is a rational number between any two real numbers. That is, for every $a, b \in \mathbb{R}$ with a < b, there exists $q \in \mathbb{Q}$ such that a < q < b. [HINT: Start by using part (c) to find a denominator for q. Then, use the Well-Ordering Axiom to choose a numerator for q.]

- 7. Let $a, b, c \in \mathbb{Z}$ be integers with a and b not both 0. Let $d = \gcd(a, b)$.
 - (a) Prove that there exist $x, y \in \mathbb{Z}$ such that

$$ax + by = c$$

if and only if d divides c.

(b) Suppose there exist $x_0, y_0 \in \mathbb{Z}$ such that

$$ax_0 + by_0 = c.$$

Show that for every $k \in \mathbb{Z}$, the numbers

$$x = x_0 + \frac{kb}{d}$$
 and $y = y_0 - \frac{ka}{d}$

are integers and ax + by = c.

(c) Suppose still that $x_0, y_0 \in \mathbb{Z}$ satisfy

$$ax_0 + by_0 = c.$$

Show that if $x, y \in \mathbb{Z}$ satisfies the equation ax + by = c, then

$$x = x_0 + \frac{kb}{d}$$
 and $y = y_0 - \frac{ka}{d}$

for some $k \in \mathbb{Z}$.

(d) Use the results from parts (a)–(c) to explain why the equation

$$18x + 42y = 30$$

has integer solutions, and find all integer solutions $x, y \in \mathbb{Z}$.

- 8. Let p be an integer such that $p \geq 2$. Suppose that for all $x, y \in \mathbb{Z}$, if p|xy then p|x or p|y. Prove that p is prime. (This is the converse of the "Theorem on Division by a Prime.")
- 9. (a) Let $x \in \mathbb{Q}$. Prove that if $x^3 \in \mathbb{Z}$, then $x \in \mathbb{Z}$.
 - (b) Let $n \in \mathbb{Z}$. Prove that if n is not a perfect cube (i.e., there is no integer m such that $n = m^3$), then $\sqrt[3]{n}$ is irrational.

- 10. Let $c, n \in \mathbb{N}$. Use the rational roots theorem (see Homework 17) to prove that $\sqrt[n]{c}$ is either an integer or an irrational number. [HINT: Consider the polynomial $x^n c$.]
- 11. For sets A and B, define

$$A \Delta B = (A \setminus B) \cup (B \setminus A).$$

- (a) Let A and B be sets. Prove that A = B if and only if $A \Delta B = \emptyset$.
- (b) Let A and B be sets. Prove that $A \Delta B = B \Delta A$.
- (c) Let A, B, and C be sets. Prove that $(A \Delta B) \Delta C = A \Delta (B \Delta C)$.
- 12. For each $n \in \mathbb{N}$, define $A_n = [0, 1 + \frac{1}{n}]$ and $B_n = [0, 1 \frac{1}{n}]$.
 - (a) Prove that $\bigcup_{n=1}^{\infty} A_n$ is an interval, and describe this interval explicitly.
 - (b) Prove that $\bigcap_{n=1}^{\infty} A_n$ is an interval, and describe this interval explicitly.
 - (c) Prove that $\bigcup_{n=1}^{\infty} B_n$ is an interval, and describe this interval explicitly.
 - (d) Prove that $\bigcap_{n=1}^{\infty} B_n$ is an interval, and describe this interval explicitly.
- 13. Define a function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ by

$$f(m,n) = (5m + 4n, 4m + 3n).$$

Prove that f is a bijection and give a formula for its inverse function.

- 14. (a) Find a bijection $f:(0,\pi)\to\mathbb{R}$ or prove that no such bijection exists.
 - (b) Find a bijection $g:[0,\pi]\to\mathbb{R}$ or prove that no such bijection exists.
- 15. Let A be an infinite set. Prove that there exists an injective function $f \colon \mathbb{N} \to A$.