Homework 10

Math 3345 - Autumn 2022 - Kutler

Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

1. [Integers Exercise 1] Prove Lemma 4: For any $a \in \mathbb{Z},-(-a)=a$.

You may only assume the axioms for the integers and Lemmas $1-3$ on the Integers handout. You may find the Additive Inverses axiom and Lemma 2 (Uniqueness of Additive Inverses) particularly useful.
2. [Integers Exercise 2] Prove Lemma 7: For any $a, b \in \mathbb{Z}$, if $a \cdot b=0$, then $a=0$ or $b=0$.

You may use only the axioms for the integers and Lemmas 1 through 6. [hint: Prove the contrapositive statement. If an integer x is not zero, then by the Trichotomy axiom, either $x \in \mathbb{N}$ or $-x \in \mathbb{N}$. Now, consider cases and use the Positive Closure axiom.]

3. [MOVED TO HW 11]

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

1. [Integers Exercise 3] Prove Lemma 9: For any $a, b \in \mathbb{Z}$, exactly one of the following is true: (i) $a<b$, or (ii) $a=b$, or (iii) $b<a$.
[hint: You will need to use the Trichotomy axiom, the Distributive Law, and Lemmas 4 and 5.]
2. [Falkner Section 4 Exercise 7] Explain what is wrong with the following "proof" that $-3=5$: Suppose that $-3=5$. Then $-3-1=5-1$. Hence, $-4=4$. But then $(-4)^{2}=4^{2}$. In other words, $16=16$. This is true. Hence, our assumption that $-3=5$ is correct.
