Homework 12

Math 3345 - Autumn 2022 - Kutler

Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

1. (a) Let n be an integer with $n>1$. Prove that n is prime if and only if for every prime p such that $p^{2} \leq n, p$ does not divide n.
(b) Use part (a) to prove that 29 is prime.
(c) Use part (a) to prove that 101 is prime.
2. Let $a, b \in \mathbb{N}$. We say that a positive integer $m \in \mathbb{N}$ is a common multiple of a and b if $a \mid m$ and $b \mid m$.
(a) Show that for any $a, b \in \mathbb{N}, a b$ is a common multiple of a and b.
(b) Prove that for any $a, b \in \mathbb{N}$, there exists a common multiple ℓ of a and b such that $\ell \leq m$ if m is any common multiple of a and b. This number ℓ is called the least common multiple of a and b. We write $\ell=\operatorname{lcm}(a, b)$.
(c) Give an example of positive integers $a, b \in \mathbb{N}$ such that $\operatorname{lcm}(a, b)=a b$.
(d) Give an example of positive integers $a, b \in \mathbb{N}$ such that $\operatorname{lcm}(a, b)<a b$.
(e) Explain why there do not exist positive integers a and b such that $\operatorname{lcm}(a, b)>a b$.

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

1. Let n be an integer. Prove that if $3 \mid n^{2}$, then $3 \mid n$.
2. Find an integer n such that $4 \mid n^{2}$ but $4 \nmid n$.
