Homework 14

Math 3345 - Autumn 2022 - Kutler

Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

1. [Falkner Section 4 Exercise $\mathbf{1 0}$ - modified] Let x be a rational number and let y be an irrational number. Prove the following statements.
(a) $-y$ is irrational.
(b) $x-y$ is irrational.
(c) $y-x$ is irrational.
(d) If $x \neq 0$, then $x y$ is irrational. [Be sure to explain where you use the condition that $x \neq 0$ in your proof.]
(e) Explain why the condition that $x \neq 0$ was necessary for part (d). That is explain why $x y$ is rational when $x=0$.
(f) $1 / y$ is irrational. [You should explain why $y \neq 0$ must be true.]
(g) If $x \neq 0$, then x / y is irrational.
(h) If $x \neq 0$, then y / x is irrational.
2. Let $a, b, q, r \in \mathbb{Z}$ such that $a=b q+r$.
(a) Let $d \in \mathbb{N}$. Prove that d is a common divisor of a and b if and only if d is a common divisor of b and r.
(b) Use part (a) to conclude that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
3. Use the Euclidean algorithm to compute the following.
(a) $\operatorname{gcd}(36,22)$
(b) $\operatorname{gcd}(96,112)$
(c) $\operatorname{gcd}(162,31)$
(d) $\operatorname{gcd}(-15,45)$

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

1. [Falkner Section 4 Exercise 16] Let $n \in \mathbb{N}$. Prove that there exists a prime number q such that $n<q \leq 1+n$!. [Hint: Take q to be any prime which divides $1+n$!. (How do we know such a prime exists?) Now explain why $q \leq 1+n$! and $q>n$ must both be true.]
2. Let $a, b \in \mathbb{N}$. Prove that $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b$.
