HOMEWORK 15 Math 3345 – Autumn 2022 – Kutler

Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

1. (a) Let $x \in \mathbb{Z}$ and let p be a prime number. Prove that

$$\gcd(p, x) = \begin{cases} p & \text{if } p | x; \\ 1 & \text{if } p \nmid x. \end{cases}$$

- (b) Let p and q be distinct prime numbers (i.e., $p \neq q$). Use part (a) to show that gcd(p,q) = 1.
- 2. (a) Use the Euclidean algorithm to compute gcd(350, 168).
 - (b) Find integers x_1 and y_1 such that $350x_1 + 168y_1 = 14$.
 - (c) Find integers x_2 and y_2 such that $350x_2 + 168y_2 = 42$. [HINT: $42 = 3 \cdot 14$.]
 - (d) Prove that there do not exist integers x and y such that 350x + 168y = 15.

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

- 1. Let $a \in \mathbb{Z}$. Prove that
 - (a) gcd(a, 1) = 1.
 - (b) gcd(a, 0) = |a|.
- 2. Let $a, b \in \mathbb{Z}$ be integers which are not both zero. Prove that gcd(a, b) = gcd(|a|, |b|).
- 3. Let $a, b \in \mathbb{Z}$ with $b \neq 0$. Prove that the fraction $\frac{a}{b}$ is in lowest terms if and only if gcd(a, b) = 1.]