Homework 16 Math 3345 – Autumn 2022 – Kutler

Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

- 1. [Falkner Section 4 Exercise 25] Let $m \in \mathbb{N}$. Show that
 - (a) For all $a \in \mathbb{Z}$, we have $a \equiv a \mod m$. [Reflexivity]
 - (b) For all $a, b \in \mathbb{Z}$, if $a \equiv b \mod m$, then $b \equiv a \mod m$. [Symmetry]
 - (c) For all $a, b, c \in \mathbb{Z}$, if $a \equiv b \mod m$ and $b \equiv c \mod m$, then $a \equiv c \mod m$. [Transitivity]
- 2. [Falkner Section 4 Exercise 26 modified] Let $m \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$. Suppose that $a \equiv b \mod m$ and $c \equiv d \mod m$.
 - (a) Prove that $a + c \equiv b + d \mod m$.
 - (b) Prove that $a c \equiv b d \mod m$.
 - (c) Prove that $ac \equiv bd \mod m$. [HINT: Since $a \equiv b \mod m$, m divides b a, so b a = mk for some integer k. Rewrite this as b = a + mk. Similarly, $d = c + m\ell$ for some integer ℓ .]
- 3. Without using a calculator, find the natural number k such that $0 \le k \le 14$ and k satisfies the given congruence.
 - (a) $2^{75} \equiv k \pmod{15}$
 - (b) $6^{41} \equiv k \pmod{15}$
 - (c) $140^{874} \equiv k \pmod{15}$

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

1. Recall that any positive integer $n \in \mathbb{N}$ has a unique **base-10 expression**:

$$n = \sum_{i=0}^{k} a_i \, 10^i,$$

where $k \ge 0$ and $0 \le a_i < 0$ for all *i*. The integers a_i are the **digits** of *n*. For example,

$$4592 = 2 \cdot 10^0 + 9 \cdot 10^1 + 5 \cdot 10^2 + 4 \cdot 10^4.$$

Prove the following:

- (a) 2|n if and only if 2 divides the "ones digit" a_0 .
- (b) 3|n if and only if 3 divides the sum of the digits $\sum_{i=0}^{k} a_i$.
- (c) 5|n if and only if the ones digit a_0 is equal to 0 or 5.
- 2. Formulate and prove divisibility criteria similar to those in the previous problem for the conditions
 - (a) 4|n.
 - (b) 9|*n*.
 - (c) 11|n.