HOMEWORK 20 Math 3345 – Autumn 2022 – Kutler

Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

- 1. [Falkner Section 10 Exercise 11] Let A and B be sets. Show that $A \subseteq B$ if and only if $A \setminus B = \emptyset$.
- 2. [Falkner Section 10 Exercise 15 modified] Let S, A, and B be sets.
 - (a) Prove that $S \setminus (A \setminus B) = (S \setminus A) \cup (S \cap B)$.
 - (b) Use part (a) to deduce that $A \setminus (A \setminus B) = A \cap B$.
 - (c) Use part (a) to deduce that $B \setminus (A \setminus B) = B$
- 3. [Falkner Section 10 Exercise 19 modified] Let A, B, and X be sets.
 - (a) Prove that if $A \subseteq B$, then $X \setminus B \subseteq X \setminus A$.
 - (b) Prove that $A \subseteq X$ if and only if $A = X \setminus (X \setminus A)$. [HINT: Use the previous problem to express $X \setminus (X \setminus A)$ in a simpler form.]
 - (c) Suppose $A \subseteq X$. Prove that if $X \setminus B \subseteq X \setminus A$, then $A \subseteq B$.
 - (d) Show, by giving an example, that the implication

if
$$X \setminus B \subseteq X \setminus A$$
, then $A \subseteq B$

may be **false** if $A \not\subseteq X$.

That is, give an example of sets A, B, and X such that $X \setminus B \subseteq X \setminus A$ and $A \not\subseteq B$.

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

1. [Falkner Section 10 Exercise 3] Use set-builder notation to describe the sets

$$A = \{\{1\}, \{2\}, \{3\}, \dots\}$$

and

$$B = \{\{1, 2, 3, \ldots\}, \{2, 4, 6, \ldots\}, \{3, 6, 9, \ldots\}, \ldots\}.$$

(Of course, you will need to make reasonable assumptions about the patterns in these examples.)

- 2. [Falkner Section 10 Exercise 5] Let A be a set such that for each set B, we have $A \subseteq B$. Show that $A = \emptyset$.
- 3. [Falkner Section 10 Exercise 12] Prove Proposition 10.18(b): Let A and B be sets and let x be any object. Then

$$x \notin A \cap B$$
 if and only if $x \notin A$ or $x \notin B$.

4. [Falkner Section 10 Exercise 24] Prove Proposition 10.34(b): Let $\mathscr A$ be a nonempty set of sets and let X be any object. Then

$$x \notin \left(\bigcap_{A \in \mathscr{A}} A\right)$$
 if and only if there exists $A \in \mathscr{A}$ such that $x \notin A$.