Homework 20

Math 3345 - Autumn 2022 - Kutler
Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

1. [Falkner Section 10 Exercise 11] Let A and B be sets. Show that $A \subseteq B$ if and only if $A \backslash B=\varnothing$.
2. [Falkner Section 10 Exercise 15 - modified] Let S, A, and B be sets.
(a) Prove that $S \backslash(A \backslash B)=(S \backslash A) \cup(S \cap B)$.
(b) Use part (a) to deduce that $A \backslash(A \backslash B)=A \cap B$.
(c) Use part (a) to deduce that $B \backslash(A \backslash B)=B$
3. [Falkner Section 10 Exercise 19 - modified] Let A, B, and X be sets.
(a) Prove that if $A \subseteq B$, then $X \backslash B \subseteq X \backslash A$.
(b) Prove that $A \subseteq X$ if and only if $A=X \backslash(X \backslash A)$. [HINT: Use the previous problem to express $X \backslash(X \backslash A)$ in a simpler form.]
(c) Suppose $A \subseteq X$. Prove that if $X \backslash B \subseteq X \backslash A$, then $A \subseteq B$.
(d) Show, by giving an example, that the implication

$$
\text { if } X \backslash B \subseteq X \backslash A \text {, then } A \subseteq B
$$

may be false if $A \nsubseteq X$.
That is, give an example of sets A, B, and X such that $X \backslash B \subseteq X \backslash A$ and $A \nsubseteq B$.

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

1. [Falkner Section 10 Exercise 3] Use set-builder notation to describe the sets

$$
A=\{\{1\},\{2\},\{3\}, \ldots\}
$$

and

$$
B=\{\{1,2,3, \ldots\},\{2,4,6, \ldots\},\{3,6,9, \ldots\}, \ldots\} .
$$

(Of course, you will need to make reasonable assumptions about the patterns in these examples.)
2. [Falkner Section 10 Exercise 5] Let A be a set such that for each set B, we have $A \subseteq B$. Show that $A=\varnothing$.
3. [Falkner Section 10 Exercise 12] Prove Proposition 10.18(b): Let A and B be sets and let x be any object. Then

$$
x \notin A \cap B \text { if and only if } x \notin A \text { or } x \notin B .
$$

4. [Falkner Section 10 Exercise 24] Prove Proposition 10.34(b): Let \mathscr{A} be a nonempty set of sets and let X be any object. Then

$$
x \notin\left(\bigcap_{A \in \mathscr{A}} A\right) \text { if and only if there exists } A \in \mathscr{A} \text { such that } x \notin A \text {. }
$$

