## Homework 23

Math 3345 - Autumn 2022 - Kutler

Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

1. [Falkner Section 11 Exercise 15(b) - modified] Let $S$ and $T$ be sets. Prove that $S$ and $T$ are disjoint (i.e., $S \cap T=\varnothing$ ) if and only if the following condition holds:

For all subsets $A_{1}, A_{2} \subseteq S$ and $B_{1}, B_{2} \subseteq T$, if $A_{1} \cup B_{1}=A_{2} \cup B_{2}$, then $A_{1}=A_{2}$ and $B_{1}=B_{2}$.

Note: The condition $(\star)$ is equivalent to the statement that the function

$$
\begin{aligned}
f: \mathscr{P}(S) \times \mathscr{P}(T) & \rightarrow \mathscr{P}(S \cup T) \\
(A, B) & \mapsto A \cup B
\end{aligned}
$$

is injective. You proved on Homework 22 that this function is always surjective.
2. [Falkner Section 11 Exercise 17 - modified] Let

$$
\begin{aligned}
f:[1, \infty) & \rightarrow \mathbb{R} \\
x & \mapsto x-1 .
\end{aligned}
$$

(a) Show that $\operatorname{Rng}(f) \subseteq[0, \infty)$. That is, $f(x) \in[0, \infty)$ for every $x \in[1, \infty)$.
(b) Prove that $\operatorname{Rng}(f)=[0, \infty)$. [Hint: In light of part (a), you need only prove the other inclusion, $[0, \infty) \subseteq \operatorname{Rng}(f)$. That is, for each $y \in[0, \infty)$, you must find some $x \in \operatorname{Dom}(f)=[1, \infty)$ such that $f(x)=y$.]
(c) Prove that $f$ is an injection.
(d) Conclude that $f$ is a bijection from $[1, \infty)$ to $[0, \infty)$, and give a formula for the inverse function $f^{-1}:[0, \infty) \rightarrow[1, \infty)$.
(e) Sketch the graph of $f$.
3. [Falkner Section 11 Exercise 26] Let $A, B$, and $C$ be sets. Prove that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijections, then $g \circ f: A \rightarrow C$ is a bijection.
4. [Falkner Section 15 Exercise 1 - modified] Show that the intervals $A=[1, \infty)$ and $B=(1, \infty)$ have the same cardinality by giving an example of a bijection $f: A \rightarrow B$. [HINT: Use one simple formula to define $f$ on $\mathbb{N}$ and a different, even simpler formula to define $f$ on $A \backslash \mathbb{N}$.]
Be sure to prove that $f$ is a bijection.

## Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

1. [Falkner Section 11 Exercise 20 - modified] Let

$$
\begin{array}{rlrl}
g:[0,1) & \rightarrow \mathbb{R} & h:(-1,0) & \rightarrow \mathbb{R} \\
x & \mapsto \frac{x}{1-x} . & x & \mapsto \frac{x}{1+x} .
\end{array}
$$

(a) Prove that $\operatorname{Rng}(g)=[0, \infty)$ and $\operatorname{Rng}(h)=(-\infty, 0)$.
(b) Prove that both $g$ and $h$ are injections.
(c) Conclude that $g$ is a bijection from $[0,1)$ to $[0, \infty)$ and that $h$ is a bijection from $(-1,0)$ to $(-\infty, 0)$.
(d) Find formulas for $g^{-1}:[0, \infty) \rightarrow[0,1)$ and $h^{-1}:(-\infty, 0) \rightarrow(-1,0)$.
2. [Falkner Section 11 Exercise 23] Let

$$
\begin{aligned}
\varphi:(-1,1) & \rightarrow \mathbb{R} \\
x & \mapsto \frac{x}{1-|x|}
\end{aligned}
$$

(a) Show that $\varphi$ is a bijection from $(-1,1)$ to $\mathbb{R}$.
(b) Find a formula for $\varphi^{-1}: \mathbb{R} \rightarrow(-1,1)$.
[hint: Use Practice Problem 1 above.]

## 3. [Falkner Section 15 Exercises $6 \& 7$ - modified]

(a) Show that the intervals $[0,1)$ and $(0,1]$ have the same cardinality by giving an example of a bijection $f:[0,1) \rightarrow(0,1]$.
(b) Show that the intervals $(0,1]$ and $(0,1)$ have the same cardinality by giving an example of a bijection $g:(0,1] \rightarrow(0,1)$.
(c) Show that the intervals $[0,1]$ and $[0,1)$ have the same cardinality by giving an example of a bijection $h:[0,1] \rightarrow[0,1)$.
(d) Conclude that the four intervals $[0,1],[0,1),(0,1]$, and $(0,1)$ all have the same cardinality.
(e) Use the functions $f, g$, and $h$ to construct a bijection from $[0,1]$ to $(0,1)$. [HINT: Use Exercise 3 above.]

