Homework 9

Math 3345 - Autumn 2022 - Kutler

Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

1. [Falkner Section 4 Exercise 5] Let x and y be integers. Prove the following statements.
(a) If $x y$ is even, then x is even or y is even.
(b) If $x y$ is odd, then x is odd and y is odd.
2. [Falkner Section 4 Exercise 6] Let a be an integer. Use the results of the previous exercise to prove the following statements.
(a) If a^{2} is even, then a is even.
(b) If a^{2} is odd, then a is odd.

3. [Falkner Section 5 Exercise 3(a)(b)]

(a) Prove by induction that for each $n \in \mathbb{N}$,

$$
1^{3}+2^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

(b) Explain why it follows from part (a) and Exercise 1 (cf. notes from Lecture 10) that for each $n \in \mathbb{N}$,

$$
1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2} .
$$

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

1. [Falkner Section 5 Exercise 3(c)] Follow the outline given in the book to find a "geometric" proof for the forumula $1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}$.
2. [Falkner Section 5 Exercise 6] Prove that for each $x \in \mathbb{Z}, 6$ divides $x^{3}-x$. [Hint: First use induction to handle the case where $x \in \mathbb{N}$.]
