Induction
Let $\mathbb{N}=\{1,2,3, \ldots\}$ be the set of natural numbers.

Ex: You might have seen the following formula in Calk II:

For each $n \in \mathbb{N}$,

$$
\underbrace{1+2+3+\cdots+n}_{=\sum_{i=1}^{n} i}=\frac{n(n+1)}{2}
$$

How can we prove $(\forall n \in \mathbb{N})\left(\sum_{i=1}^{n} i=\frac{n(n+1)}{2}\right)$?
We need an argument that works for every n - but as n gets larger ne get more and more summand.

$$
\begin{array}{ll}
n=1: & 1=\frac{1.2}{2} \\
n=2: & 1+2=3=\frac{2 \cdot 3}{2} \\
n=3: 1+2+3=6=\frac{3.4}{2}
\end{array}
$$

etc.

The Principle of Mathematical Induction
Let $P(n)$ be a sentence involving $n \in \mathbb{N}$.
EX: $P(n)=" \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
The PoMI is: Suppose
(1) $P(1)$ is true [base case] and
(2) For any $n \in \mathbb{N}$, if $P(n)$ is true, then $P(n+1)$ is true. [inductive step]
Then $P(n)$ is true for every $n \in \mathbb{N}$.
In symbols:

$$
\{P(1) \wedge[(\forall n \in \mathbb{N})(P(n) \Rightarrow P(n+1))]\} \Rightarrow(\forall n \in \mathbb{N}) P(n)
$$

The PoMI is an axiom of the integers. It is assumed to be true by definition.
Why should we accept it?
Intuition - dominoes, trains, etc.

Tho: For all $n \in \mathbb{N}, \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$

Proof: Let $P(n)$ be " $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.
We will prove $(\forall n \in \mathbb{N}) P(n)$ by induction on n.
Base Case: When $n=1$,

$$
\sum_{i=1}^{1} i=1 \quad \text { and } \frac{1(1+1)}{2}=1 \text {, }
$$

so $P(1)=" \sum_{i=1}^{j_{i}}=\frac{1(1+1) "}{2}$ is true.
Inductive Step: Let $n \in \mathbb{N}$. We will prove $P(n) \Rightarrow P(n+1)$ is true.

Suppose $P(n)$ is true. That is,

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

for this particular number n.
So $1+2+3+\cdots+n=\frac{n(n+1)}{2}$.

Add $n+1$ to both sides:

$$
\begin{aligned}
1+2+3+\cdots+n+(n+1) & =\frac{n(n+1)}{2}+(n+1) \\
& =\frac{n(n+1)}{2}+\frac{2(n+1)}{2} \\
& =\frac{(n+1)(n+2)}{2} \\
& =\frac{(n+1)[(n+1)+1]}{2} .
\end{aligned}
$$

This is precisely $P(n+1)$. So $P(n+1)$ is true, completing the inductive step.

We conclude, by mathematical induction, that $P(n)$ is true for every $n \in \mathbb{N}$.

Thu: For every $n \in \mathbb{N}$,

$$
\underbrace{1+3+5+\cdots+(2 n-1)}_{=\sum_{i=1}^{n}(2 i-1)}=n^{2} .
$$

Proof: We proceed by induction on n.
Let $P(n)$ be " $1+3+5+\cdots+(2 n-1)=n^{2}$."
Base Case: When $n=1, P(1)$ is

$$
" 1=1^{2 "}
$$

which is true.

Inductive Step: Let $n \in \mathbb{N}$. We wish to prove $P(n) \Rightarrow P(n+1)$, so we may assume $P(n)$.
Thus,

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

is true (for this n).

Now,

$$
\begin{aligned}
1 & +3+5+\cdots+(2 n-1)+[2(n+1)-1] \\
& =n^{2}+[2 n+2-1] \\
& =n^{2}+2 n+1 \\
& =(n+1)^{2} .
\end{aligned}
$$

Thus, we have shown that $P(n+1)$ is true, completing the inductive step.

By induction, we conclude that $P(n)$ is the for all $n \in \mathbb{N}$.

Does the base case have to be $n=1$?

$$
N_{0}!
$$

Ex (Exam I Review 8(e)): For every $n \in \mathbb{N}$ such that $n>3,2^{n}<n$!

Check:

$$
\begin{aligned}
& 2^{3}=8>6=3!\times \\
& 2^{4}=16<24=4! \\
& 2^{5}=32<120=5!
\end{aligned}
$$

Proof: Let $P(n)$ be " $2^{n}<n$!"
We will show $P(n)$ is true for every $n \in \mathbb{N}$ with $n>3$ by induction.
Base Case: $n=4$. Since $2^{4}=16$ and $4!=24, P(4)$ is true.

Inductive Step: Let $n \in \mathbb{N}$ such that $n>3$. We must prove $P(n) \Rightarrow P(n+1)$.
Assume $P(n)$ is true, so $2^{n}<n$! Multiply by 2 to get

$$
\underbrace{2 \cdot 2^{n}}_{=2^{n+1}}<2 n!
$$

Since $2<3<n<n+1$, we have

$$
2^{n+1}<2 n!<(n+1) n!=(n+1)!
$$

Thus, $P(n+1)$ is true, completing the inductive step.

We conclude that $P(n)$ is true for every $n \in \mathbb{N}$ such that $n>3$.

Note: We could have equivalently set

$$
Q(n)=P(n+3)=" 2^{n+3}<(n+3)!"
$$

and proved $(\forall n \in \mathbb{N}) Q(n)$ by induction starting at $n=1$.

