Induction

Let $N = \{1, 2, 3, \ldots\}$ be the set of <u>natural numbers</u>.

Ex: You might have seen the following formula in Calc II:

For each nEN, $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ = Ž i How can be prove $(\forall n \in \mathbb{N})\left(\frac{2}{i=1} = \frac{n(n+1)}{2}\right)$? We need an argument that works for every n - but as n gets larger ne get more and more summands. $n = 1: 1 = \frac{1\cdot 2}{3}$ n = 2: $1 + 2 = 3 = \frac{2 \cdot 3}{2}$ $\underline{N=3}: 1+2+3=6=\frac{3\cdot 4}{7}$ etc.

The Principle of Mathematical Induction Let P(n) be a sentence involving nelN. Ex: $P(n) = \frac{n(n+1)}{2}$ The <u>PoMI</u> :s: Suppose OP(I) is true [base case] and (2) For any nell, if P(n) is true, then P(n+1) is true. [inductive step] Then P(n) is true for every nEN. In symbols: $\left\{ P(1) \land \left[(\forall n \in IN) (P(n) \Rightarrow P(n+1)) \right] \right\} \Rightarrow (\forall n \in IN) P(n)$ The PoMI is an axiom of the integers. It is assumed to be true by definition. Why should ne accept it? Intuition - dominoes, trains, etc.

Thm: For all
$$n \in IN$$
, $\sum_{i=1}^{n} i = \frac{n(n+i)}{2}$
 $\frac{Proof}{2}$: Let $P(n)$ be " $\sum_{i=1}^{n} i = \frac{n(n+i)}{2}$."
We will prove $(\forall n \in IN) P(n)$ by induction on n .
 $\frac{Base \ Case}{}$: When $n = 1$,
 $\sum_{i=1}^{i} i = 1$ and $\frac{1((1+i))}{2} = 1$,
so $P(1) = \frac{\sum_{i=1}^{n} i = \frac{1(1+i)}{2}}{2}$ is true.
 $\frac{Inductive \ Step}{}$: Let $n \in IN$. We
will prove $P(n) \Rightarrow P(n+i)$ is true.
Suppose $P(n)$ is true. That is,
 $\sum_{i=1}^{n} i = \frac{n(n+i)}{2}$
for this particular number n .
So $1+2+3+\dots+n = \frac{n(n+i)}{2}$.

$$\frac{\text{Thm}}{\text{I} + 3 + 5 + \dots + (2n - 1)} = n^{2}.$$

$$= \sum_{i=1}^{n} (2i - 1)$$

$$\frac{1 + 3 + 5 + \dots + (2n - 1)}{1 + 3 + 5 + \dots + (2n - 1)} = n^{2}.$$

$$\frac{1 + 3 + 5 + \dots + (2n - 1)}{1 + 3 + 5 + \dots + (2n - 1)} = n^{2}.$$

$$\frac{1 - 1^{2}}{1 + 3 + 5 + \dots + (2n - 1)} = n^{2}.$$

$$\frac{1 - 1^{2}}{1 + 3 + 5 + \dots + (2n - 1)} = n^{2}.$$

$$\frac{1 + 3 + 5 + \dots + (2n - 1)}{1 + 3 + 5 + \dots + (2n - 1)} = n^{2}.$$

$$\frac{1 + 3 + 5 + \dots + (2n - 1)}{1 + 3 + 5 + \dots + (2n - 1)} = n^{2}.$$

$$\frac{1 + 3 + 5 + \dots + (2n - 1)}{1 + 3 + 5 + \dots + (2n - 1)} = n^{2}.$$

Now,

$$1+3+5+\cdots+(2n-1)+[2(n+1)-1]$$

 $= n^{2}+[2n+2-1]$
 $= n^{2}+2n+1$
 $=(n+1)^{2}$.
Thus, we have shown that
 $P(n+1)$ is true, completing the
inductive step.
By induction, we conclude that
 $P(n)$ is true for all $n \in N$.
Does the base case have to be $n=1?$
 $No!$

Ex (Exam I Review 8(e)): For every nell
such that
$$n > 3$$
, $2^n < n!$
Check: $2^3 = 8 > 6 = 3! \times 2^n = 16 < 24 = 4! < 2^5 = 32 < 120 = 5! < 2^5 = 32 < 120 = 5! < 2^n < 120 = 100 = 1$

Since
$$2 \le 3 \le n \le n + 1$$
, we have
 $2^{n+1} \le 2n! \le (n+1)n! = (n+1)!$
Thus, $P(n+1)$ is true, completing
the inductive step.
We conclude that $P(n)$ is true
for every $n \le N$ such that $n \ge 3$.
Note: We could have equivalently set
 $Q(n) = P(n+3) = "2^{n+3} \le (n+3)!"$
and proved $(\forall n \le N) Q(n)$ by
induction starting at $n = 1$.