Axioms for the integers
Axioms 1-10 on handout

- Every fact you know (or don't) abort integers follows from these axioms.
- For the moment, let's imagine that we only know these axioms.

What can we deduce?
For example, it's not even clear that \mathbb{N} is equal to $\{1,2,3, \ldots\}$.

Lemma: For any $a, b, c \in \mathbb{Z}$, if $a+b=a+c$, then $b=c$. [Additive Cancellation]

Proof: Suppose $a, b, c \in \mathbb{Z}$ and $a+b=a+c$.
Then

$$
\begin{aligned}
b & =0+b \\
& =(-a+a)+b \\
& =-a+(a+b) \\
& =-a+(a+c) \\
& =(-a+a)+c \\
& =0+c \\
& =c
\end{aligned}
$$

(Identity)

$$
=(-a+a)+b \quad \text { (Additive inverses) }
$$

$$
=-a+(a+b) \quad \text { (Associativity) }
$$

$$
=-a+(a+c) \quad \text { (Given) }
$$

(Associativity)
(Additive inverses)
(Identity)
Note: Typically use associativity + commutatity without comment.
Ex: Additive inverses are unique.
If $a, b \in \mathbb{Z}$ with $a+b=0$, then Since $a+(-a)=0$ also, we have $a+b=a+(-a)$. Thus $b=-a$ by cancellation.

Other basic facts:

Lemma: For any $a \in \mathbb{Z}, a \cdot 0=0$.
Proof: Let $a \in \mathbb{Z}$. Then

$$
\begin{aligned}
a \cdot 0 & =a \cdot(0+0) & & \quad \text { (Identity) } \\
& =a \cdot 0+a \cdot 0 . & & \text { (Distributive Law) }
\end{aligned}
$$

Also, $a \cdot 0=a \cdot 0+0$ by the Identity axiom, So

$$
a \cdot 0+a \cdot 0=a \cdot 0+0 .
$$

By cancellation, we get $a \cdot 0=0$.
Lemma: For any $a \in \mathbb{Z},-(-a)=a$. (HW 10)
Lemma: For any $a, b \in \mathbb{Z}$, if $a \cdot b=0$, then $a=0$ or $b=0$.

Idea: Prove the contmpositive: if $a \neq 0$ and $b \neq 0$, then $a \cdot b \neq 0$.

Consider cases.

