You will prove on HW10: Lemma: For any a, b & Z, if a b = 0, then a = 0 or b = 0. Let's use this to prove: Thm: For any a, b, c & Z with a # 0, if a b = a c, then b = c. [Multiplicative Cancellation]

Proof: Let
$$a, b, c \in \mathbb{Z}$$
 with $a \neq 0$.
Suppose $a \cdot b = a \cdot c$. Then
 $a \cdot b - a \cdot c = 0$
 $a \cdot (b - c) = 0$.

By the Lemma, a=0 or b-c=0. But $a \neq 0$, so b-c=0. That is, b=c.

Note: No division regnired! (And no division defined in Z.)

Order Properties of Z Def: For a, b = Z, a < b means b-a e N. · a = b menns a < b or a = b. · a>b mems b<a. Ex: Ora (=) a-OEN (=) aEN. Lemma: For any a, b ∈ Z, exactly one of the following is true: (i) a < b (ii) a = b(iii) a>b

Proof: Exercise.

In other nords, Z is linearly ordered by <. Lemma: Let a, b, c = Z. If a < b, then a + c < b + c
If a < b and c > 0, then a · c < b · c. Proof: (1) Suppose acb. Then b-a EN. Since (b+c) - (a+c) = b-a,we have $(b+c) - (a+c) \in \mathbb{N}$. That is, a+c < b+c. (2) Suppose $a \leq b$ and c > 0. Then $b - a \in IN$ and $c \in IN$. By Positive Closure, (b-a)·c e N. By the Distributive Law, b.c - a.c EN, i.e. a.c. < b.c.

The Well-Ordering axiom (#10) is the only one
inclusion used yet. It says that any
non-empty subset of IN has a simillest element.
An element
$$a \in S$$
 is the simillest element of
 S if for all $x \in S$, $a \leq x$.
In symbols: $(\forall x \in S)(a \leq x)$
Observe that a smallest element in S , if it exists,
is unique.
 $(\forall x \in S)(a \leq x)$ and $(\forall x \in S)(b \in x)$
implies $a \leq b$ and $b \leq a$, so $a = b$.
Lemma: The integer 1 is the smallest
element of N .
Proof: First, we know N has a smallest
element by the Well-Ordening axiom.
Call it a .

Since
$$a \le n$$
 for every $n \in N$, we have
 $a \le 1$. Therefore $a = 1$ or $a \le 1$. If $a = 1$,
we are done.
To show $a \le 1$ is filse, we will assume
it's true and derive a contradiction.
Formally, if $P \Longrightarrow (a \text{ filse statement})$ is
true, then it must be that P is filse.
So assume $a \le 1$. Because $a \in IN$, $O \le a$.
Multiply the inequality $a \le 1$ by $a \ge 0$ to
get
 $a \cdot a \le 1 \cdot a = a$.

Now, $a \cdot a \in N$ by Positive Closure, which contradicts a being the smallest element of N.

Thus, our assumption that a < 1 is false, so a = 1.

This actually shows that the integers
are what you think they are:
• We know O, I & Z by the Identity axiom.
• We also know 1+1 = 2
2+1 = 3
3+1 = 4
i
are positive integers.
If there was another positive number x not on this
list, then it would satisfy
$$n < x < n+1$$
 for
some $n \in \mathbb{N}$. But then $0 < x - n < 1$, which violates
the theorem.

• The only other integers, by Trichotomy, satisfy $-a \in N$. That is, they are the additive inverses of elements in M. Together, $Z = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$.

