You will prove on HWIO:
Lemma: For any $a, b \in \mathbb{Z}$, if $a \cdot b=0$, then $a=0$ or $b=0$.

Let's use this to prove:
The: For any $a, b, c \in \mathbb{Z}$ with $a \neq 0$, if $a \cdot b=a \cdot c$, then $b=c$.
[Multiplicative Cancellation]
Proof: Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$. Suppose $a \cdot b=a \cdot c$. Then

$$
\begin{aligned}
& a \cdot b-a \cdot c=0 \\
& a \cdot(b-c)=0 .
\end{aligned}
$$

$B y$ the Lemma, $a=0$ or $b-c=0$. But $a \neq 0$, so $b-c=0$.

That is, $b=c$.

Note: No division required!
(And no division defined in \mathbb{Z}.)

Order Properties of \mathbb{Z}
Def: For $a, b \in \mathbb{Z}, a<b$ means $b-a \in \mathbb{N}$.

- $a \leqslant b$ means $a<b$ or $a=b$.
- $a>b$ mems $b<a$.

Ex: $0<a \Leftrightarrow a-0 \in \mathbb{N} \Leftrightarrow a \in \mathbb{N}$.
Lemma: For any $a, b \in \mathbb{Z}$, exactly one of the following is true:
(i) $a<b$
(ii) $a=b$
(iii) $a>b$

Proof: Exercise.
$\left[\begin{array}{l}\text { In other words, } \mathbb{Z} \text { is linearly ordered } \\ \text { by }<\text {. }\end{array}\right]$
Lemma: Let $a, b, c \in \mathbb{Z}$.
(1) If $a<b$, then $a+c<b+c$
(2) If $a<b$ and $c>0$, then $a \cdot c<b \cdot c$.

Proof: (1) Suppose $a<b$. Then $b-a \in \mathbb{N}$.
Since

$$
(b+c)-(a+c)=b-a,
$$

we have $(b+c)-(a+c) \in \mathbb{N}$.
That is,

$$
a+c<b+c
$$

(2) Suppose $a<b$ and $c>0$. Then $b-a \in \mathbb{N}$ and $c \in \mathbb{N}$.
By Positive Closure, $(b-a) \cdot c \in \mathbb{N}$. By the Distributive Law,

$$
\begin{aligned}
& \quad b \cdot c-a \cdot c \in \mathbb{N} \text {, } \\
& \text { ie. } \quad a \cdot c<b \cdot c \text {. }
\end{aligned}
$$

The Well-Ordering axiom (\#10) is the only one ne haven't used yet. It says that any non-empty subset of \mathbb{N} has a smallest element.

An element $a \in S$ is the smallest element of S if for all $x \in S, a \leqslant x$.

In symbols: $(\forall x \in S)(a \leqslant x)$
Observe that a smallest element in S, if it exists, is unique.

$$
(\forall x \in S)(a \leq x) \text { and }(\forall x \in S)(b \leq x)
$$ implies $a \leqslant b$ and $b \leq a$, so $a=b$.

Lemma: The integer 1 is the smallest
element of \mathbb{N}.
Proof: First, we know \mathbb{N} has a smallest element by the Well-Ordening axiom.
Call it a.

Since $a \leq n$ for every $n \in \mathbb{N}$, we have $a \leq 1$. Therefore $a=1$ or $a<1$. If $a=1$, we are done.

To show $a<1$ is false, we will assume it's the and derive a contradiction.

Formally, if $P \Rightarrow$ (a false statement) is true, then it must be that P is false.

So assume $a<1$. Because $a \in \mathbb{N}, 0<a$.
Multiply the inequality $a<1$ by $a>0$ to get

$$
a \cdot a<1 \cdot a=a .
$$

Now, $a \cdot a \in \mathbb{N}$ by Positive Closure, which contandicts a being the smallest element of N.

Thus, our assumption that $a<1$ is false, so $a=1$.

This actually shows that the integers are what you think they ave:

- We know $0,1 \in \mathbb{Z}$ by the Identity axiom.
- We also know $1+1=2$

$$
\begin{aligned}
2+1 & =3 \\
3+1 & =4
\end{aligned}
$$

are positive integers.
If thee was another positive number x not on this list, then it would satisfy $n<x<n+1$ for some $n \in \mathbb{N}$. But then $0<x-n<1$, which violates the theorem.

- The only other integers, by Trichotomy, satisfy $-a \in \mathbb{N}$. That is, they are the additive inverses of elements in \mathbb{N}.

Together, $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$.

Note: The handout shows this slightly more rigorously, by proving the Principle of
Mathematical Induction.

