Warm-U : Prove that $1+3+5+\cdots+(2 n-1)=n^{2}$ for exch $n \in \mathbb{N}$, without using induction
Suppose not. Then there is a smallest $a \in \mathbb{N}$ such that $1+3+5+\cdots+(2 a-1) \neq a^{2}$. (why?)

What can you say abort a ?

Thu: Let $n \in \mathbb{N}$. If $n>1$, then there is a prime p such that $p l n$.

Proof: Suppose, to get a contindiction, that the theorem is false.

That is, there is a natural number greater than 1 which is not divisible by any prime.
By the Well-Ordeing Principle, there is a smallest such number. (Why?) Call it a.

So $\cdot a>1$

- no prime divides a
- If $1<d<a$, then n is divisible by some prime.

Now, a is prime or composite.

- If a is prime, then ala, so a is divisible by a prime, which is a contradiction.
- If a is composite, then it has a positive divisor d with $d \neq 1$ and $d \neq a$.

Since $d l a, d \leqslant a$. But $d \neq a$, so $d<a$. Also, $d \neq 1$, so $d>1$.

Thus, d must have a prime dirsor p. Since pld and dla, we have pla. (HW II) This is a contradiction.

Thus, the theorem holds for all natural numbers $n \geq 2$.

The infinitude of primes
The: There are infinitely many prime numbers.
Proof: Suppose, for the sake of contradiction, that there are only finitely many primes, say

$$
p_{1}, p_{2}, \ldots, p_{n} .
$$

Let $m=p_{1} p_{2} \cdots p_{n}$ be the product of all of these primes.

Now, by the previous theorem, there is a prime q such that $q 1(m+1)$.
Since q must be one of the primes p_{1}, \ldots, p_{n} (because these are the only primes), so $q 1 \mathrm{~m}$.
Thus, q divides

$$
(m+1)-m=1 .
$$

But this is a contindiction, since $q \geqslant 2$.

