$$\frac{Warm - Up}{Dp}: Prove or disprove:$$

$$If = \frac{a}{b} and = \frac{c}{d} are rational numbers in lonest terms, then = \frac{ad + bc}{bd}$$
is also in lonest terms.

Irrational Mumbers
Def: Let
$$x \in \mathbb{R}$$
. We say x is irrational if $x \notin \mathbb{Q}$.
That is, for all $a, b \in \mathbb{Z}$ with $b \neq 0$, $x \neq \frac{a}{b}$.
Ex: $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $\sqrt{5}$ are irrational
 $\sqrt{10}$ is irrational if $n \in \mathbb{Z}$ is not a perfect square.
 $\sqrt{3}\sqrt{2}$ is irrational
 $\sqrt{10}$ e are irrational
Hand e are irrational
Hand to prove any of these!
 0 TT Lombert, 1751
 e Enlar, 1731
To show x is irrational, we assume it is rational
and get a contradiction.

This: Let
$$x \in \mathbb{Q}$$
 and let $y \in \mathbb{R}$ be irrational.
(1) $x + y$ is instituted.
(2) If $x \neq 0$, then $x \cdot y$ is instituted.
Proof: (1) Suppose, to get a contradiction, that $x + y \in \mathbb{Q}$.
Since x is rational, $-x$ is rational (1444 13).
Thus,
 $y = (x + y) + (-x)$
is the sum of two rational numbers,
so $y \in \mathbb{Q}$, a contradiction.
(2) HW 14.
What about the sum of two irrational.
So $y \in \mathbb{Q}$, a contradiction.
(2) HW 14.
What about the sum of two irrational.
So $y - JZ = (-1) \cdot JZ$.
But $JZ + (-JZ) = 0 \in \mathbb{Q}$.
.
It can be irrational: $JZ + JZ = 2JZ$ is irrational
what instance

The same thing happens with multiplication:

$$J\overline{z} \cdot J\overline{z} = 2 \in \mathbb{Q}$$
 $J\overline{z} \cdot J\overline{3} = J\overline{6} \notin \mathbb{Q}$
in in in

Let's prove that JZ is irrational. We'll use

Then: For every
$$x \in Q$$
, $x^2 \neq 2$.
This actually only shows $JZ \notin Q$. To prove that
 JZ is a real number, you need to use the
Least Upper Bound Property.
Proof: Suppose, to get a contradiction, that there is
some $x \in Q$ such that $x^2 = 2$.
Let $x = \frac{a}{b}$ be the representation of x in
lowest terms, where $a \in Z$ and $b \in N$.
This means: If de N and dla and dlb, then d=1.

We have
$$x^2 = \left(\frac{a}{b}\right)^2 = 2$$
, so $\frac{a^2}{b^2} = 2$.
Therefore,
 $a^2 = 2b^2$. (*)
Since $b^2 \in \mathbb{Z}$, this shows a^2 is even, and
thus a is oven as well.
Then $a = 2k$ for some $k \in \mathbb{Z}$. Now (*)
becomes
 $(2k)^2 = 2b^2$
 $4k^2 = 2b^2$.
We may divide both sides by 2 (or use
Multiplicative Cancellation) to get
 $2k^2 = b^2$.
But this means b^2 is even, and thus so
is b.
Now 21a and 21b, which contradicts $x = \frac{a}{b}$

Write $x = \frac{a}{b}$ in lowest terms with $a \in \mathbb{Z}$ and $b \in \mathbb{N}$.

Our goal is to show b=1, so x=a & Z.
Let's assume b #1 and get a contradiction.
Since $b \neq l$ and $b \in N$, we have $b > l$. Thus, there is some prime p such that $p \mid b$.
Prov. Now, $x^2 = \frac{a^2}{b^2} = n$ for some $n \in \mathbb{Z}$. Thus, $a^2 = b^2 n = b(bn)$.
That is, bla. By transitivity of divisibility, pla also. But this contradicts the fact that $\frac{2}{6}$ is in lowest terms.
Therefore, we conclude $b=1$ and thus $x \in \mathbb{Z}$.