Division Algorithm

Thm (Division Algorithm): Let $d \in \mathbb{N}$. Then for any $n \in \mathbb{Z}$, there exists a unique $q \in \mathbb{Z}$ and a unique $r \in \mathbb{Z}$ such that

n = dq + r

and Ofred-1.

(\deN)(\neZ)(\flaceZ)(\flaceZ)(\flaceZ)(\flaceZ)(\flaceZ)(\nedgetr) \no (0\frac{1}{2} \nedgetr \nedgetr)

Warm-Up: Let d=6, n=317. Find q and r.

Note:
$$n = dq + r \iff \frac{\eta}{d} = q + \frac{r}{d}$$

Proof: Let delN and neZ. We must prove two things:

Existence: There exist q, r & Z satisfying the Heorem statement.

Uniqueness: If q, r, and q2, r2 both satisfy the theorem, then q= q2 and r= r2.

Part 1: Existence Consider all possible solutions to n = dx + y

where $x, y \in \mathbb{Z}$ and $y \ge 0$.

Let S be the set of all y-values in these solutions. i.e., $S = \{y \in \mathbb{Z} \mid y \ge 0 \text{ and } (\exists x \in \mathbb{Z})(y = n - dx)\}$

We now show that S is non-empty.

Case 1: $n \ge 0$. Then taking x = 0, we have $y = n - d(0) = n \ge 0$ So $n \in S$.

Case 2: n < 0. Then taking x = n, we have y = n - d(n) = n(1-d).

Since $d \in \mathbb{N}$, $1-d \leq 0$. So $n(1-d) \geq 0$, and hence $n(1-d) \in S$.

Therefore S is nonempty. By the Well-Ordening Property, S has a smallest element. Call it r.

Why does this work? If $0 \in S$, then 0 is the Smallest element. Otherwise, S is a subset of IN and we can use Well-Ordering.

Since $r \in S$, there exists $q \in \mathbb{Z}$ such that n = dq + r.

The only thing left to show is that 0 \(r \) \(d - 1 \).

Because res, we have 04r.

Suppose that $r \ge d-1$. Then $r \ge d$ (since $r \in \mathbb{Z}$), so $r-d \ge 0$.

But since

$$n-d(q+1)=(n-dq)-d=r-d,$$

this means that $r-d \in S$. But this contradicts the fact that r is the least element of S. So $a \le d-1$ must be true.

Part 2: Uniqueness Suppose now that q1, q2, r1, r2 &20 are such that

$$n = dq_1 + r_1,$$

 $n = dq_2 + r_2,$

and O ≤ r, ≤ d-1, O ≤ r, ≤ d-1.

Now,
$$dq_1 + r_1 = dq_2 + r_2$$
,
so $r_1 - r_2 = dq_2 - dq_1 = d(q_2 - q_1)$.

Thus, $d(r_1-r_2)$. But $-(d-1) \le r_2 \le 0$, so $d\cdot (-1) < -(d-1) \le r_1-r_2 \le d-1 < d\cdot 1$ $d\cdot (q_2-q_1)$

So the only possibility is $r_1 - r_2 = 0$, i.e., $r_1 = r_2$.

Now, $r_1 - r_2 = 0 = d \cdot (q_2 - q_1)$. Since $d \neq 0$ (delN), this forces $q_2 - q_1 = 0$, i.e. $q_1 = q_2$.