Warm-Up: Discuss "Guidelines for Good Mathematical Writing."
Which suggestions do you think are most important?

Propositional Calculus ENothing to do with differential integral calculus $^{\text {Cal }}$
How to "build" new sentences from existing ones?

Use logical connectives.

Logical Connective	Symbol	Plain English
negation	\square	"not"
conjunction	Λ	"and"
disjunction	V	"or" (inclusive)
implication	\Longrightarrow	"if-then"
biconditional	\Longleftrightarrow	"if and only if"

Let P, Q, R, \ldots stand for sentences.
Ex: $\begin{aligned} & P=\text { "It is Friday" } \\ & Q=\text { "Were having }\end{aligned}$
$Q=$ "We're having fun in Math 3345."
$\rightarrow P, P \wedge Q, P \Rightarrow Q$, etc.
(1) Negation: \rightarrow means "not"

The negation $\neg P$ has the opposite truth value as P.
So if P is true, then $\neg P$ is false, if P is false, then $\neg P$ is tue.

Summarize this in a truth table:

P	$\neg P$
T	F
F	T

Ex: What is $\neg(\neg P)$? Make another truth table:

P	$\neg P$	$\neg(\neg P)$
T	F	T
F	T	F

If P is the, then $\neg P$ is false. If $\neg P$ is false, then $\neg(\neg P)$ is true. So if P is tue then $\neg(\neg P)$ is true.
Similarly, if P is false, then $-(\neg P)$ is false.
So P and $\neg(\neg P)$ always have the sane froth value. We sur they are logically equivalent and unite

$$
P \equiv \begin{aligned}
& \overline{\tau_{\text {"is logically equivalent to" }}} \neg(\neg P) .
\end{aligned}
$$

(2) Conjunction: 1 means "and"
$P \wedge Q$ is the exactly wen both P and Q are true.

P	Q	$P \wedge Q$
T	T	T
T	F	F
F	T	F
F	F	F

Ex: 2 is even and 3 is odd. T

Observation: \wedge is commutative: $P \wedge Q \equiv Q \wedge P$

- Λ is associative: $P \wedge(Q \wedge R) \equiv(P \wedge Q) \wedge R$

Proof by words/trith tulle (if tine).
(3) Disjunction: v means "or" (inclusive)
$P \wedge Q$ is true exactly when at least one of P or Q is true.

P	Q	$P \vee Q$
T	T	T
T	F	T
F	T	T
F	F	F

$$
\begin{array}{r}
\text { Ex: } 2 \text { is even or } 3 \text { is odd. } T \\
2 \text { is even or } 3 \text { is even. } T \\
2 \text { is odd or } 3 \text { is even. } F
\end{array}
$$

Note: $P \vee Q \equiv Q \vee P$

$$
P \vee(Q \vee R) \equiv(P \vee Q) \vee R
$$

How do the operations $7, ~ M, V$ interact with one another?

Ex: Let

$$
\begin{aligned}
& P=\text { " } m \text { is even." } \\
& Q=" n \text { is odd." }
\end{aligned}
$$

Then
$P \wedge Q$ is " m is even and n is odd."

This becomes false if m is not even OR n is not odd.

$$
=\neg P \vee \neg Q
$$

Thu (DeMorgan's Lams) Let P and Q be sentences. Then
(a) $\neg(P \wedge Q)$ is logically equivalent to $\neg P \vee \neg Q$
(b) $\neg(P \vee Q)$ is logically equivalent to $-P \wedge \neg Q$

Proof of (a):
By truth table:

P	Q	$P \wedge Q$	$\neg(P \wedge Q)$	$\neg P$	$\neg Q$	$\neg P \vee \neg Q$
T	T	T	F	F	F	F
T	F	F	T	F	T	T
F	T	F	T	T	F	T
F	F	F	T	T	T	T

So ne see $\neg(P \wedge Q) \equiv \neg P \vee \neg Q$.

In words:
We wish to show $\neg(P \wedge Q)$ always has the same truth value as $\neg P \vee \neg Q$.

First, suppose $\neg(P \wedge Q)$ is true. Then $P \wedge Q$ is false, so at least one of P or Q is false.

But this means at least one of $\neg P$ or $\neg Q$ is true, so $\neg P \vee \neg Q$ is true.

Next, suppose $\neg(P \wedge Q)$ is false. Then $P \wedge Q$ is true, so both P and Q are true.

Now, both $\neg P$ and $\neg Q$ will be false, meaning $\neg P \vee \neg Q$ is false as well.
(b) HW 1

