The: Let
$$a, b \in \mathbb{Z}$$
, not both zero.
Set $d = \gcd(a, b)$. Then there exist $x, y \in \mathbb{Z}$
such that
 $ax + by = d$.

$$Ex: 616x + 252y = 28 \quad \text{is solved by}$$

$$x = -2, \quad y = 5$$
How? Reverse Enclidean alg.

Proof: It is enough to prove the theorem for
$$a, b \in \mathbb{N}$$

ONIT. If $a < 0$, then $d = gcd(a, b) = gcd(-a, b)$,
and if $x, y \in \mathbb{Z}$ solves
 $(-a)x + by = d$
then $a(-x) + by = d$.
Sim. if $b < 0$.

• If
$$a=0$$
 and $b>0$, then $gcd(0,b)=b$ and
 $0x + by = b$ is solved by $y=1$ (and any $x \in \mathbb{Z}$).
Sim. if $b=0$.

So we assume
$$a, b \in N$$
 and write
 $d = gcd(a, b)$. Let $P(n)$ be the sentence

"If
$$a \le n$$
 and $b \le n$, then there exist
x, y $\in \mathbb{Z}$ such that $ax + by = d$."

Base Cuse: If
$$a \le 1$$
 and $b \le 1$, then
 $a=b=1$ (since $a, b \in IN$). So $d = gcd(1,1)=1$
and
 $1 \times + 1y = 1$
is solved by taking $x=1$ and $y=0$.
Thus, P(1) is true.

Conse Z: If
$$a = n+1 = b$$
, then $d = n+1$
and
 $(n+1)x + (n+1)y = (n+1)$
is solved by $x=1$ and $y=0$.

Case 3: One of
$$a, b$$
 is $n+1$, and the other is at most n . Without loss of generality, $a = n+1$ and $b \le n$.

By the division algorithm, we have

$$a = qb + r$$

where $0 \le r \le b - 1$. Then $r \le n$.
Also, $gcd(b,r) = gcd(a,b) = d$ by
HW 17.

Thus, because
$$P(n)$$
 is true, there
exist integers $z, w \in \mathbb{Z}$ such that
 $bz + rw = d$.

Making the substitution
$$r = a - qb$$
, we get
 $bz + (a - qb)w = d$

or

$$aw + b(z - gw) = d.$$

That is,
$$x = w$$
 and $y = z - qw$
are integers satisfying
 $ax + by = d$.

Congruence
Def: Let
$$m \in \mathbb{N}$$
 and $a, b \in \mathbb{Z}$. We say a is
congruent to b modulo m if $m|(b-a)$.
We write this as $a \equiv b \mod m$.
Ex: $\cdot 10 \equiv 4 \mod 3$ because $3|(4-10)$
Note: 10 and 4 both lone a remainder of 1 when
divided by 3.
 $\cdot 11 \equiv 23 \mod 3$ because $3|(23-11)$
 $\cdot 3 \equiv 0 \mod 3$ " $3|(0-3)$

 $\frac{Proof}{Use}$ the division algorithm to write $a = mq_1 + r_1$ $b = mq_2 + r_2$

where $q_{1}, q_{2}, r_{1}, r_{2} \in \mathbb{Z}$ and $O \leq r_{1} \leq m - 1$, $O \leq r_{2} \leq m - 1$.

We must show a = b mod m (=) r_i = r_2.

$$(=) Suppose \quad a \equiv b \mod m. \text{ Then } m \text{ divides}$$
$$b-a = (mq_2 + r_2) - (mq_1 + r_1)$$
$$= m(q_2 - q_1) + (r_2 - r_1)$$

Since m divides b-a and m(q2-q1), m must divide

$$(b-a) - m(q_2 - q_1) = r_2 - r_1$$

But $-(m-1) \leq r_2 - r_1 \leq m-1$, so the only possibility is that $r_2 - r_1 = 0$, i.e. $r_1 = r_2$. (<=) Conversely, suppose $r_1 = r_2$. Then $r_2 - r_1 = 0$, so $b - a = m(q_2 - q_1)$ is divisible by m. That is, $a = b \mod m$.