Warm-Up: Find integers x and y such that

$$
51 x-13 y=1
$$

Last time: $m \in \mathbb{N}, a, b \in \mathbb{Z}$
$1 a a$ and b leave the
$a \equiv b \bmod m \quad$ same remainder when $G_{m \mid(b-a)}$ divided by m.

Properties
Thu: Let $m \in \mathbb{N}$.
(a) For all $a \in \mathbb{Z}, \quad a \equiv a \bmod m$ [Reflexive]
(b) For all $a, b \in \mathbb{Z}$, if $a \equiv b \bmod m$, then $b \equiv a \bmod m$.
[Symmetric]
(c) For all $a, b, c \in \mathbb{Z}$, if $a \equiv b \bmod m$ and $b \equiv c \bmod m$, then $a \equiv c \bmod m$ [Transitive]

Proof: HW 16.

Together, these properties say that congruence $\bmod m$ is an equivalence relation.

Equivalence relations give a notion of "sameness."
Other examples: - Equality (of integers, real numbers, functions,...)

- Congruence of triangles
- Similarity of triangles

The: Let $m \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$.
Suppose $a \equiv b \bmod m$ and $c \equiv d \bmod m$.
(a) $a+c \equiv b+d \bmod m$.
(b) $a-c \equiv b-d \bmod m$.
(c) $a c \equiv b d \bmod m$.

Proof: HWN 16.

Ex: When $m=2$, every $a \in \mathbb{Z}$ satisfies exactly one of
$-a \equiv 0 \bmod 2 \Leftrightarrow a$ is even

- $a \equiv 1 \bmod 2 \Leftrightarrow a$ is odd

So when we do arithmetic $\bmod 2$, we can replace even integer by 0 or 1 .

We have

$$
\begin{array}{ll}
0+0=0 & 0 \cdot 0=0 \\
0+1=1 & 0 \cdot 1=0 \\
1+0=1 & 1 \cdot 0=0 \\
1+1=2 \equiv 0 \bmod 2 & 1 \cdot 1=1
\end{array}
$$

So ne have the following + and. tables:

+		
$\bmod 2$	0	1
0	0	1
1	1	0

$\bmod z$	0	1
0	0	0
1	0	1

This recovers

| + | even odd |
| :---: | :---: | :---: |
| even | even odd |
| odd | odd even |

-	even odd	
even	even even	
odd	even	odd

Ex: What is the remainder when 22.19 is divided by 3 ?

Recall: Remainder is the unique $r \in \mathbb{Z}$ such that $0 \leq r \leq 2$ and $22.19 \equiv r \bmod 3$.
$22 \equiv 1 \bmod 3,19 \equiv 1 \bmod 3$,
So $22.19 \equiv 1.1 \bmod 3$

$$
\equiv 1 \bmod 3,
$$

meaning 22.19 leaves a remainder of 1 chen divided by 3 .

Ex: What is the remainder when

$$
(754+1083) \cdot 17
$$

is divided by 5 ?

$$
\begin{aligned}
(754+1083) \cdot 17 & \equiv(4+3) \cdot 2 \bmod 5 \\
& \equiv 7 \cdot 2 \bmod 5 \\
& \equiv 2 \cdot 2 \bmod 5 \\
& \equiv 4 \bmod 5
\end{aligned}
$$

So the remainder is 4 .

