Thm: Let
$$m \in N$$
 and $a, b, c, d \in \mathbb{Z}$.
Suppose $a \equiv b \mod m$ and $c \equiv d \mod m$.
Then
(a) $a+c \equiv b+d \mod m$.
(b) $a-c \equiv b-d \mod m$.
(c) $ac \equiv bd \mod m$.

Proof: HW 16.

Ex: When m=2, every $a \in \mathbb{Z}$ sufficies exactly one of $a \equiv 0 \mod 2 \iff a$ is even $a \equiv 1 \mod 2 \iff a$ is odd So when we do arithmetic mod 2, we can replace every integer by 0 or 1. We have $\bigcirc + \bigcirc = \bigcirc$ $0 \cdot 0 = 0$ 0 + 1 = 1 $0 \cdot 1 = 0$ | + () = | $|\cdot 0 = 0$ 1 + 1 = 2 = 0 mod 2 | · | = |

This recovers

	+	eren	odd		•	even	odd	
	even	even	odd		even	even	even	
	odd	odd	even		odd	even	odd	
Ex: What is the remainder when 22.19 is divided by 3?								
Recall: Remainder is the unique $r \in \mathbb{Z}$ such that $0 \le r \le 2$ and $22.19 \equiv r \mod 3$.								
22 = 1 mod 3, 19 = 1 mod 3,								
So 22.19 = 1.1 mod 3 = 1 mod 3,								
V	Menning divided	22·19 by 3	lean S.	rs a re	mainde	- of l	chen	

Ex: What is the remainder then

$$(754 + 1083) \cdot 17$$

is divided by 5?
 $(754 + 1083) \cdot 17 \equiv (4 + 3) \cdot 2 \mod 5$
 $\equiv 7 \cdot 2 \mod 5$
 $\equiv 2 \cdot 2 \mod 5$
 $\equiv 4 \mod 5$

So the remainder is 4.