Warm-Up: Make + and - tables for arithmetic modulo 4.

The: Let $m \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. If

$$
a \equiv b \bmod m
$$

then

$$
a^{n} \equiv b^{n} \bmod m
$$

for every $n \in \mathbb{N}$.
Proof: Let $P(n)$ be " $a^{n} \equiv b$ " $\bmod m$." Well use induction.

Base Case: $P(1)$ is given.
Inductive Step: Let $n \in \mathbb{N}$ and suppose $P(n)$ is true. That is, $a^{n} \equiv b^{n} \bmod m$.

Since $a \equiv b \bmod m$, we get

$$
a^{n} \cdot a \equiv b^{n} \cdot b \bmod m,
$$

ie., $a^{n+1} \equiv b^{n+1} \bmod m$. So $P(n+1)$ is time.

Thus $P(n)$ is time for all $n \in \mathbb{N}$ by $P \cdot M I$.

Ex: What is the remainder when 91^{100} is divided by 3?

Since $91 \equiv 1 \bmod 3$, we have

$$
\begin{aligned}
91^{100} & \equiv 1^{100} \bmod 3 \\
& \equiv 1 \bmod 3 .
\end{aligned}
$$

So the remainder is 1 .

Ex: What is the remainder when 257^{50} is divided by 5?

Since $257 \equiv 2 \bmod 5$, we have

$$
257^{50} \equiv 2^{50} \bmod 5 .
$$

Now, $2^{4}=16$, so $2^{4} \equiv 1 \bmod 5$.
Write

$$
50=4 \cdot 12+2 . \quad(50 \text { dived by } 4)
$$

Then

$$
2^{50}=2^{4 \cdot 12+2}=\left(2^{4}\right)^{12} \cdot 2^{2},
$$

So

$$
\begin{aligned}
257^{50} & \equiv 2^{50} \\
& \equiv\left(2^{4}\right)^{12} \cdot 2^{2} \quad \bmod 5 \\
& \equiv 1^{12} \cdot 4 \quad \bmod 5 \\
& \equiv 4 \quad \bmod 5 .
\end{aligned}
$$

The remainder is 4 .

Primes Redux
Our goal is now to prove that every $n \in \mathbb{N}$ has a unique prime factorization.

$$
\begin{aligned}
& \text { Ex: } 12=2^{2} \cdot 3 \\
& 55=5 \cdot 11 \\
& 140=2^{2} \cdot 5 \cdot 7
\end{aligned}
$$

Minor issue \#1: 1 is not a product of primes.
Solution: Ignore 1.
(Or view it as the "empty product".)
Minor issue \#2: What do we mean by "unique"?

$$
\text { Ex: } 140=2 \cdot 2 \cdot 5 \cdot 7=2 \cdot 5 \cdot 2 \cdot 7=7 \cdot 2 \cdot \cdot 5 \cdot 2=\ldots
$$

Solution: The factorization is unique up to reordering.
Or, unique if we list the primes in increasing order.

The (Fundamental Theorem of Arithmetic)
(1) Every $n \in \mathbb{N}$ such that $n \geqslant 2$ a product of primes.
(2) Every $n \in \mathbb{N}$ such that $n \geqslant 2$ can be written uniquely as a product of primes, in the following sense: Suppose that

$$
n=p_{1} p_{2} \cdots p_{r} \quad \text { and } \quad n=q_{1} q_{2} \cdots q_{s} \text {, }
$$

where $p_{1}, p_{2}, \ldots, p_{r}$ and $q_{1}, q_{2}, \cdots, q_{5}$ are all primes such that

$$
p_{1} \leq p_{2} \leq \cdots \leq p_{r} \quad \text { and } \quad q_{1} \leq q_{2} \leq \cdots \leq q_{5} \text {. }
$$

Then $r=s$ and $p_{i}=q_{i}$ for all $1 \leqslant i \leqslant r$.

We'll prove this soon.

Applications of FTA
In practice, finding the prime factorization is HARD.
But the FTA has many "applications" in theoretical math.

In particular, we can re-cast statements about divisibility in terms of prime factorizations.

Let $a, b \geqslant 2$ be integers.

- For any prime p,
pla $\Leftrightarrow P$ appears in the prime factorization of a
every prime in the prime
- $a \mid b \Leftrightarrow$ factorization of a appears at least as many times in the prime factorization of b.
- The prime divisors of $\operatorname{gcd}(a, b)$ are the prime divisors that a and b have in common.

The number of times a prime p appears in the factorization of $\operatorname{gcd}(a, b)$ is the smaller of
the number of times p appears in the factorization of a

- $\operatorname{gcd}(a, b)=1 \Leftrightarrow a$ and b have no prime divisors in common "a and b are relatively prime"

Ex: $\quad a=96=2^{5} \cdot 3 \cdot 5^{\circ}, \quad b=180=2^{2} \cdot 3^{2} \cdot 5$

$$
\operatorname{gcd}(96,180)=2^{2} \cdot 3=12
$$

We can compute the least common multiple ($1+W$ 12) similarly:

$$
1 \mathrm{~cm}(96,180)=2^{5} \cdot 3^{2} \cdot 5=1440
$$

