Warm-Up: Given that
and

$$
\begin{aligned}
10,192 & =2^{4} \cdot 7^{2} \cdot 13 \\
271,656 & =2^{3} \cdot 3^{2} \cdot 7^{3} \cdot 11
\end{aligned}
$$

compute $\operatorname{gcd}(10,192,271,656)$
and

$$
\operatorname{Icm}(10,192,271,656)
$$

In general, let p_{1}, \ldots, p_{k} be the In general let p_{1}, \ldots, p_{k} be the
complete list of primes which divide
a or divide b.

We can write the prime factorizations as

$$
a=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}
$$

and

$$
b=p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}},
$$

where $e_{i} \geqslant 0$ and $f_{i} \geqslant 0$ for all i.

Then

$$
\operatorname{gcd}(a, b)=p_{1}^{\min \left(e_{1}, f_{1}\right)} p_{2}^{\min \left(e_{2}, f_{2}\right)} \cdots p_{k}^{\min \left(e_{2}, f_{2}\right)}
$$

Also,

$$
\operatorname{Icm}(a, b)=p_{1}^{\max \left(e, f_{1}, f_{1}\right)} p_{2}^{\max \left(e_{2}, f\right)} \cdots p_{1}^{\max \left(e, f_{1}\right)}
$$

Why? This is the smallest positive integer divisible by both a and b.

The: Let $a, b \in \mathbb{N}$. Then

$$
\operatorname{gcd}(a, b) \cdot \operatorname{Icm}(a, b)=a b
$$

Equivalently, $\operatorname{Icm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)}$ and $\operatorname{gcd}(a, b)=\frac{a b}{\operatorname{lcm}(a, b)}$.
Proof: Write

$$
a=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} \quad \text { and } b=p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}}
$$ as above.

Since $\min \left(e_{i}, f_{i}\right)+\max \left(e_{i}, f_{i}\right)=e_{i}+f_{i}$, we have

$$
\begin{aligned}
\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b) & =p_{1}^{e_{1}+f_{1}} p_{2}^{e_{2}+f_{2} \ldots p_{k}^{e_{k}+f_{n}}} \\
& =a b .
\end{aligned}
$$

The: Let $a, b, c \in \mathbb{Z}$.
(1) If $\operatorname{gcd}(b, c)=1$, then

$$
\operatorname{gcd}(a, b c)=\operatorname{gcd}(a, b) \cdot \operatorname{gcd}(a, c)
$$

(2) If $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$, then $\operatorname{gcd}(a, b c)=1$.
(3) Let $d=\operatorname{gcd}(a, b)$. Then $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.

Proof: (1) Let $b=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}$ and $c=q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{s}^{f_{s}}$ be the unique prime factorizations of b and c, where p_{1}, \ldots, p_{r} are the distinct prime divisors of b and q_{1}, \ldots, q_{s} are the distinct prime divisors of c, and the exponents e_{i} and f_{j} are positive integers.

Since $\operatorname{gcd}(b, c)=1, \quad p_{i} \neq q_{j}$ for all i and j.

Now, the unique prime factorization of a will look like

$$
a=p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{r}^{x_{r}} \cdot q_{1}^{y_{1}} q_{2}^{y_{2}} \cdots q_{s}^{y_{s}} \cdot \text { (other primes), }
$$

where the exponents x_{i}, y_{j} are non-negotive (some might be 0).

$$
\operatorname{gcd}(a, c)=q^{\min \left(f, y_{c}\right)} q_{2}^{\min \left(f, y_{j}\right) \ldots q_{s}^{\min \left(f s, y_{s}\right)},}
$$

and

$$
\operatorname{gcd}(a, b c)=\operatorname{gcd}(a, b) \cdot \operatorname{gcd}(a, c) .
$$

(2) + (3) HW 17 .

Proof of FTA part 1
Let S be the set of all counterexamples to FTA 1.
That is, for $n \in \mathbb{N}$,
$n \in S \Leftrightarrow n \geqslant 2$ and n is not equal to a product of primes.
We want to argue that FTA I is true, meaning S is empty.
Suppose, to get a contradiction, that S is not empty. Then, by the Well-Ordering $A_{x i o m,}$ there is a smallest element in S.

Call it a.
Since $a \geqslant 2$, we know there is some prime p such that ila.

Thus, $a=p k$ for some $k \in \mathbb{Z}$.
Since a and P_{b} are both positive, so is k. So $k \geqslant 1$.

If $k=1$, then $a=p$ is prime. But then $a \notin S$, a contradiction.
If $k>1$, then $k \geqslant 2$ (since $k \in \mathbb{Z}$) but $k<p k=a \quad($ since $p \geqslant 2)$.
So k is smaller than a, the smallest element in S. Thus, $k \notin S$, meaning k is a product of primes.
But then $a=p k$ is a product of primes. So $a \notin S$, a contradiction.

