$$\frac{Warm-Up}{10,192}: Given that
10,192 = 24 \cdot 72 \cdot 13
and
271,656 = 23 \cdot 32 \cdot 73 \cdot 11
compate gcd(10,192, 271,656)
and
1cm(10,192, 271,656).$$

In general, let
$$p_1, ..., p_k$$
 be the
comptete list of primes which divide
a or divide b.
We can write the prime factorizations as
 $a = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$
and $b = p_1^{f_1} p_2^{f_2} \cdots p_k^{f_k}$,
where $e_i \ge 0$ and $f_i \ge 0$ for all i.

$$gcd(a,b) = p_1^{min(e_1,f_1)} p_2^{min(e_2,f_2)} \cdots p_k^{min(e_k,f_k)}$$

•

Also,

$$lcm(a,b) = p_1^{max(e_1,f_1)} p_2^{max(e_2,f_2)} \cdots p_n^{max(e_n,f_n)}$$

Why? This is the smallest positive integer
divisible by both a and b.

Thm: Let
$$a, b \in N$$
. Then
 $gcd(a, b) \cdot lcm(a, b) = ab$.

Equivalently,
$$lcm(a,b) = \frac{ab}{gcd(a,b)}$$
 and $gcd(a,b) = \frac{ab}{lcm(a,b)}$

$$\frac{P_{roof}: Write}{a = p_{i}^{e_{i}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}} \text{ and } b = p_{i}^{f_{i}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}}}$$
as above.

Since
$$\min(e_{i}, f_{i}) + \max(e_{i}, f_{i}) = e_{i} + f_{i}$$
,
we have
 $gcd(a,b) \cdot lcm(a,b) = p_{i}^{e_{i}+f_{i}} p_{z}^{e_{z}+f_{z}} \cdots p_{u}^{e_{u}+f_{u}}$
 $= ab.$

Thm: Let
$$a,b,c \in \mathbb{Z}$$
.
(1) If $gcd(b,c) = 1$, then
 $gcd(a, bc) = gcd(a, b) \cdot gcd(a, c)$.
(2) If $gcd(a,b) = 1$ and $gcd(a,c) = 1$,
then $gcd(a, bc) = 1$.
(3) Let $d = gcd(a, b)$. Then $gcd(\frac{a}{d}, \frac{b}{d}) = 1$.

Proof: (1) Let
$$b = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}$$
 and $c = q_1^{e_1} q_2^{e_2} \dots q_r^{e_r}$
be the unique prime factorizations
of b and c, where p_1, \dots, p_r are
the distinct prime divisors of b and
 q_1, \dots, q_s are the distinct prime divisors
of C, and the exponents e_i and f_j
are positive integers.
Since $gcd(b,c) = 1$, $p_i \neq q_j$ for all
 i and j .
So $bc = p_1^{e_1} p_2^{e_1} \dots p_r^{e_r} \dots q_1^{e_1} q_2^{e_2} \dots q_s^{e_s}$.
Now, the unique prime factorization
of a will book like
 $a = p_1^{e_1} p_2^{e_1} \dots p_r^{e_r} \dots q_s^{e_s} \dots q_s^{e_s} \dots q_s^{e_s} \dots q_s^{e_s}$.
where the exponents x_i, y_j are non-negetive
(some might be 0).

Thus,
$$gcd(a,b) = p_{1}^{min(e_{1},x_{1})} p_{2}^{min(e_{2},x_{2})} \cdots p_{r}^{min(e_{r},x_{r})}$$
,
 $gcd(a,c) = q_{1}^{min(f_{1},y_{1})} q_{2}^{min(f_{2},y_{2})} \cdots q_{s}^{min(f_{s},y_{s})}$,
and
 $gcd(a,bc) = gcd(a,b) \cdot gcd(a,c)$.

Proof of FTA part 1 Let S be the set of all counterexamples to FTA1. That is, for nelly nes (=> n ≥ 2 and n is not equal to a product of primes. We nant to argue that FTAI is true, meaning S is empty. Suppose, to get a contradiction, that S is not empty. Then, by the Well-Ordening Axiom, there is a smallest element in S. Call it a. Since a?2, we know there is some prime p such that pla.

Thus, a=pk for some k=Z. Since a and p are both positive, so is k. So $k \ge 1$. If k=1, then a=p is prime. But then $a \notin S$, a contradiction. If k>1, then k>2 (since LEZ) but k < pk = a (since $p \ge 2$). So k is smaller than a, the smallest element in S. Thus, k # S, meaning k is a product of primes. But then a = pk is a product of primes. So $a \notin S$, a contradiction.