Fundamental Theorem of Arithmetic
Let $n \geqslant 2$ be an integer.
(1) n can be factored as a product of primes.
(2) This factorization is unique.

$$
L \text { up to communtivity }
$$

We proved (1) last week.
The proof of (2) uses
Thy (Division by a prime): Let p be a prime number. Then for all $x, y \in \mathbb{Z}$, if play then pix or ply.
ie.,

$$
x y \equiv 0 \bmod p \Rightarrow \quad \text { or } \quad \begin{aligned}
& x \equiv 0 \bmod p \\
& y \equiv 0 \bmod p
\end{aligned}
$$

Proof: Let p be a prime and $x, y \in \mathbb{Z}$.
Suppose ploy.
If $p \mid x$, then we are done.
So suppose płx. We must show that ply.
Since $p \nmid x, \operatorname{gcd}(p, x)=1$ (HW 15).
Thus, by the reverse Euclidean Algorithm, there exist $u, v \in \mathbb{Z}$ such that

$$
p u+x v=1
$$

Multiply by y to get

$$
p u y+x y v=y
$$

Since plpuy and ploys, we have ply, as desired.

Cor: Let p be a prime. For each $n \in \mathbb{N}$ and all $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{Z}$, if $p \mid\left(x, x_{2} \cdots x_{n}\right)$ then p divides at least one of $x_{1}, x_{2}, \ldots, x_{n}$.
Proof: Let $P(n)$ be the sentence
"For all $x_{1}, \ldots, x_{n} \in \mathbb{Z}$, if $p \mid\left(x_{1} \cdots x_{n}\right)$ then p dinges at least one of the x_{i}.

We will prove $P(n)$ holds for all $n \in \mathbb{N}$ by induction.

Base Case: $P(1)$ is automatically time, since if $p \mid x_{1}$, then $p \mid x_{1}$

Inductive Step: Let $n \in \mathbb{N}$ and suppose $P(n)$ is true.

Let $x_{1}, \ldots, x_{n+1} \in \mathbb{Z}$ and suppose

$$
p \mid\left(x_{1} \cdots x_{n}\right) \cdot\left(x_{n-1}\right) .
$$

By the theorem on division by a prime, $p l\left(x_{1} \cdots x_{n}\right)$ or $p \mid x_{n+1}$.

If $p \mid\left(x_{1} \cdots x_{n}\right)$, then by $P(n), p \mid x_{\text {: }}$ for some $(\leq i \leq n$, and we have the desired conclusion.

If $p \mid x_{n+1}$, then we also have the desired conclusion.

In either case, $P(n+1)$ is time, completing the inductive step.

Proof of FTA part 2
Let $P(k)$ be the sentence
"Any integer $n \geqslant 2$ which is equal to a product of k primes has a unique prime factorization."
We will prove $P(k)$ is true for all $k \in \mathbb{N}^{P}$ by induction.

Base Case: $k=1$. If n is a product of one prime, then

$$
n=p
$$

is prime.
If $n=p=q_{1} q_{2} \cdots q_{l}$ is another factorization into primes q_{i}, then $p l q \cdot i q e$, so by the corollary p divides one of the q_{i}.
WLOG, $p \mid q_{1}$. But p and q_{1} are both prime, so $p=q_{1}$. If $l \geqslant 2$, then
so

$$
\begin{aligned}
& p=p q_{2} \cdots q_{l} \\
& 1=q_{2} \cdots q_{l} .
\end{aligned}
$$

But this is impossible, so $l=1$ and

$$
n=p
$$

is the unique prime factorization.

Inductive Step: Let $k \in \mathbb{N}$ and suppose $P(k)$ is true.
Now, let $n \in \mathbb{N}$ be such that

$$
n=p_{1} p_{2} \cdots p_{k+1}
$$

is a product of $k+1$ primes p_{i}
If $n=q_{1} q_{2} \cdots q_{l}$ is another prime factorization, then since piln, we have $p_{1} \mid\left(q_{1} \cdots q_{l}\right)$.
Similar to above, we deduce that p_{1} is equal to one of the $q_{i}^{\prime} s$. WLOG, $p_{1}=q_{1}$.
Then $p_{1} p_{2} \cdots p_{k+1}=p_{1} q_{2} \cdots q_{l}$, so

$$
p_{2} \cdots p_{k+1}=q_{2} \cdots q_{l} .
$$

But the left-hand side is a product of k primes, so it has a unique prime factorization by $P(k)$.

Thus, $l=k+1$ and, up to reordering, the primes q_{2}, \ldots, q_{k+1} are exactly the primes p_{2}, \ldots, p_{1+1}.
That is, n has a unique prime factorization.

This proves $P(k+1)$, completing the
ind native step. inductive step.

Sets
"Def": A set is an unordered collection of objects, called elements of the set.

Actual definition is a list of axioms

One way to describe a set: list its elements
inside braces.
Ex: $\{1,2,3\},\{$ red, blue $\},\{0, \$, \pm, \square\}$ are sets

Important notes:

- The elements in a set are unordered.

So

$$
\{1,2,3\},\{1,3,2\},\{2,1,3\},\{2,3,1\},\{3,1,2\},\{3,2,1\}
$$

are six ways of writing the same set.

- The elements are distinct - no object can appear more than once. If we write

$$
\{1,1,1,2,2,2,2,2,2,3,3\}
$$

this means the set $\{1,2,3\}$.

