If A is a set, then $x \in A$ means x is an element of A. $x \notin A$ means x is not an element of A.

Ex: A = {1,2,3}. Then 2 ∈ A and @ #A.

Def: The empty set is the set with no elements. It is denoted \emptyset . X & Ø is fulse for every X. Sets can have sets as elements. Ex: A = { {1,23, {red, blue}, \$} is a set with three elements, two of which are sets themselves. {1,2} e A | ∉ A

Other ways to specify sets
In words: · Let B be the set whose
elements are the first five
prime numbers
so
$$B = \{2, 3, 5, 7, 11\}$$

· Let $\mathbb{R}_{>0}$ be the set of all
positive real numbers.
By patterns: · $E = \{2, 4, 6, 8, ...\}$
(E is the set of positive even numbers)
· $P = \{2, 3, 5, 7, 11, ...\}$
(P is the set of all prime numbers)

These first two methods are somewhat limited.

Set-Builder Notation: If
$$P(x)$$
 is a sentence,
then

$$\begin{cases} x \mid P(x) \\ x \mid P(x)$$

Transformation notation: If A is a set
and f is some function defined
on A, then
$$\xi f(x) \mid x \in A \xi$$

is the set of all objects $f(x)$ obtained
from all $x \in A$.

Ex: Let
$$S = \{n^2 \mid n \in M\}$$
 be the set of
(positive) squares and $C = \{n^3 \mid n \in N\}$ the
set of (positive) cubes.
Define $A = \{x + y \mid x \in S \text{ and } y \in C\}$.
Then
In words: A is the set of integers
which can be witten as the sum
of a positive square and a positive cube.
Pattern: $A = \{2, 5, 9, 10, 12, 17, 24, ...\}$
Set - Builder:
 $A = \{n \in N \mid there exist a, b \in N$ such that $n = a^{2} + b^{3}\}$

Subsets

That is, $A \subseteq B$ means every element of A is also an element of B.

$$E_{X}: \cdot \{2, 3, 5\} \subseteq \{1, 2, 3, 4, 5\}$$

• $\mathbb{N} \subseteq \mathbb{Z}$

- Z = Q
- Q = R

Ex: Any time we use set-builder notation to write $A = \{ x \in B \mid P(x) \}$, we have $A \in B$.

Thm: For every set A,
$$\emptyset \in A$$
.
Proof: The sentence $x \in \emptyset$ is always follow.
Thus,
 $x \in \emptyset \implies x \in A$
is always true, so $\emptyset \in A$.

Thm: For every set A,
$$A \in A$$
.
Proof: The sentence
 $x \in A \implies x \in A$
is the for all x, so $A \in A$.

$$\frac{\text{Def}:\text{Lef }A\text{ and }B\text{ be sets. We say }\underline{A=B}$$
if $A\subseteq B$ and $B\subseteq A$.

So to prove
$$A = B$$
, we usually have to prove
2 things:
• $A \subseteq B$ (x $\in A \Rightarrow x \in B$)
• $B \subseteq A$ (x $\in B \Rightarrow x \in A$)

Thum: Let A and B be sets. Then
$$A = B$$

if and only if $(x \in A \Leftrightarrow x \in B)$ for all x.
Proof: $A = B$ is logically equivalent to
 $(A \in B) \land (B \in A)$
 $\equiv (\forall x) (x \in A \Rightarrow x \in B) \land (\forall x) (x \in B \Rightarrow x \in A)$
 $\equiv (\forall x) [(x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)]$
 $\equiv (\forall x) [(x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)]$
 $\equiv (\forall x) [(x \in A \iff x \in B] \land (x \in B \Rightarrow x \in A)]$
 $\equiv (\forall x) [(x \in A \iff x \in B] \land (x \in B \Rightarrow x \in A)]$

Ex: Let's prove

$$\begin{aligned}
\underbrace{\sum x \in \mathbb{Z} \mid x^2 = 1}_{=A} &= \underbrace{\sum 1, -1}_{=B} \\
\end{aligned}$$
We must prove $A \in B$ ($x \in A = x \in B$)
and $B \in A$ ($x \in B = x \in A$).

Prof.: (=) Let x eA. Then
$$x \in \mathbb{Z}$$
 and
 $x^2 = 1$. So
 $x^2 - 1 = 0$
 $(x-1)(x+1) = 0$.
Thus, $x = 1$ or $x = -1$, so $x \in B$.
(2) Let $x \in B$. Then $x = 1$ or $x = -1$.
Either way, $x \in \mathbb{Z}$ and $x^2 = 1$,
so $x \in A$.

Def: Let A and B be sets. We say
A is a proper subset of B,
written
$$A \in B$$
, if $A \subseteq B$ and $A = B$.

So A ⊊B means (∀x)(x (A ⇒ x (B) ^ (∃y)(y (B ^ y (A).

Warning: Some people use C instead of \subseteq . C does not mean proper subset.