Warm-Up: List all subsets of

- . [1]
- · {1,2}
- · {1,2,3}

Ex: Let n & N. A set with n elements has exactly 2" subsets. Why?

Warning: E vs. E

Ex:  $| \in \{1,2,3\}$  is true  $\{1\} \in \{1,2,3\}$  is false  $\{1\} \subseteq \{1,2,3\}$  is true  $| \subseteq \{1,2,3\}$  makes no sense

Ex:  $\emptyset \subseteq \emptyset$  (because  $\emptyset \subseteq A$  for every set A)
but  $\emptyset \not\in \emptyset$  (because  $x \in \emptyset$  is always filse)

Ex: Consider  $\{\emptyset\}$ , the set whose only element is  $\emptyset$ . Then  $\emptyset \in \{\emptyset\}$  and  $\emptyset \subseteq \{\emptyset\}$ .

## Thm: 1) For all sets A, A = A. [Reflexive]

- ② For all sets A and B, if  $A \subseteq B$  and  $B \subseteq A$ , then A = B. [Antisymmetric]
- 3 For all sets A, B, and C, if  $A \subseteq B$  and  $B \subseteq C$ , then  $A \subseteq C$ . [Transitive]

Note: < and divisibility have these same 3 properties!

Proof: 1 we proved last time.

- 2) is our definition of set equality.
- 3: Suppose  $A \subseteq B$  and  $B \subseteq C$ . This means  $x \in A \Rightarrow x \in B$  is true for every x and  $x \in B \Rightarrow x \in C$  is true for every x.

To prove  $A \subseteq C$ , suppose  $x \in A$  for some x. Then  $x \in B$  because  $A \subseteq B$ . Thus,  $x \in C$  because  $B \subseteq C$ . Therefore,  $x \in A \Rightarrow x \in C$  for every x, so  $A \subseteq C$ .

## Algebra of Sets

Def: Let A and B be sets.

- 1) The union of A and B is the set  $AUB = \{x \mid x \in A \text{ or } x \in B\}$ .
- 2) The intersection of A and B is the fe ANB = {x | x \ie A and x \ie B}.
- 3 The <u>relative complement</u> of B in A is the set

## Pictures:



and

- EUP={neIN | n is even or prime} = {2,3,4,5,6,7,8,10,11,12,13,17,...}
- $E \cap P = \{ n \in |N| \mid n \text{ is even and prime} \}$ =  $\{ 2 \}$
- ENP = {4,6,8,10,...}
- PIE = {3,5,7,11,...}
- NIE = {neIN | n is ald } = {1,3,5,7,...}
- . EIN = Ø