Warm-Up: Let A and B be sets. Show that $A \subseteq A \cup B$ and $B \subseteq A \cup B$.

HW 19: You showed $A \cap B \subseteq A$ and $A \cap B \subseteq B$.

Recall: $\quad x \in A \cup B \Longleftrightarrow(x \in A) \vee(x \in B)$

$$
x \in A \cap B \Leftrightarrow(x \in A) \wedge(x \in B)
$$

Many theorems from logic translate directly to theorems about sets.

Lemma: Let A and B be sets. Then for any object x,
(a) $x \notin A \cup B$ if and only if $x \notin A$ and $x \notin B$.
(b) $x \notin A \cap B$ if and only if $x \notin A$ or $x \notin B$.

Proof: (a) $x \notin A \cup B \Leftrightarrow \neg(x \in A \cup B)$

$$
\begin{aligned}
& \Leftrightarrow \neg[(x \in A) \vee(x \in B)] \\
& \Leftrightarrow \neg(x \in A) \wedge \neg(x \in B) \quad \text { DeM organ } \\
& \Leftrightarrow(x \notin A) \wedge(x \notin B) .
\end{aligned}
$$

(b) is similar, using the other Demorgan Law.

Thu (DeMorgan Laws for sets):
Let A, B, and S be sets. Then
(i) $S \backslash(A \cup B)=(S \backslash A) \cap(S \backslash B)$.
(ii) $S \backslash(A \cap B)=(S \backslash A) \cup(S \backslash B)$.

Proof: (i) We'll show both containments.
(C) : Let $x \in S \backslash(A \cup B)$. Then $x \in S$ and $x \notin A \cup B$. By the Lemma, $x \notin A$ and $x \notin B$. So $x \in S \backslash A$ and $x \in S \backslash B$. Thus, $x \in(S \backslash A) \cap(S \backslash B)$.
(\supseteq) Let $x \in(S \backslash A) \cap(S \backslash B)$. Then $x \in S V A$ and $x \in S \backslash B$. So $x \in S$ and $x \notin A$, and $x \in S$ and $x \notin B$. Since $x \notin A$ and $x \notin B$, we have $x \notin A \cup B$ by the Lemma. Thus, because $x \in S$, we have $x \in S \backslash(A \cup B)$.
(ii) is similar.

Similarly, one can prove the following.
The (Commutativity of U and n):
Let A and B be sets. Then
(i) $A \cup B=B \cup A$
(ii) $A \cap B=B \cap A$.

The (Associativity of u and n):
Let A, B, and C be sets. Then
(i) $(A \cup B) \cup C=A \cup(B \cup C)$
(i) $(A \cap B) \cap C=A \cap(B \cap C)$.

The (Distributive Laws for sets):
Let A, B, and S be sets. The,
(i) $S \cap(A \cup B)=(S \cap A) \cup(S \cap B)$
(ii) $S \cup(A \cap B)=(S \cup A) \cap(S \cup B)$

Sets of sets
Notation: We'll often use a script letter to denote a set of sets - ie. a set, all of chose elements are sets.

Def: Let A be a set of sets. Then

$$
\begin{aligned}
& \text { - } \bigcup_{A \in \mathcal{A}} A=\{x \mid(\exists A \in \mathcal{A})(x \in A)\} \\
& \text { - } \bigcap_{A \in \mathcal{A}} A=\{x \mid(\forall A \subset \mathcal{A})(x \in A)\}
\end{aligned}
$$

Note: The book writes $\cup A$ for $\bigcup_{A \in A} A$ and $\cap \lambda$ for $\bigcap_{A \in \lambda} A$.

Ex: Let $\mathcal{A}=\{\{1,2\},\{2,3\},\{2,5,6\}\}$. Then

$$
\bigcup_{A \in \mathcal{A}} A=\{1,2\} \cup\{2,3\} \cup\{2,5,6\}=\{1,2,3,5,6\}
$$

and

$$
\bigcap_{A \in A} A=\{1,2\} \cap\{2,3\} \cap\{2,5,6\}=\{2\} .
$$

Ex: Let $A_{n}=\{k \in \mathbb{N} \mid k \geqslant n\}$
So

$$
=\{n, n+1, n+2, \ldots\}
$$

$$
\begin{aligned}
& A_{1}=\{1,2,3, \ldots\}=\mathbb{N} \\
& A_{2}=\{2,3,4, \ldots\} \\
& A_{3}=\{3,4,5, \ldots\}
\end{aligned}
$$

Set $A=\left\{A_{n} \mid n \in \mathbb{N}\right\}$

$$
=\left\{A_{1}, A_{2}, A_{3}, \ldots\right\}
$$

A set with infoitelly many cements, each of which is a set

Then

$$
\bigcup_{A \in A} A=\bigcup_{n=1}^{\infty} A_{n}=A_{1} \cup A_{2} \cup A_{3} \cup \cdots=\mathbb{N}
$$

Proof: Let $x \in \bigcup_{n=1}^{\infty} A_{n}$. Then $x \in A_{n}$ for some n. But $A_{n} \subseteq \mathbb{N}$, so $x \in \mathbb{N}$. Thus, $\bigcup_{i=1}^{\infty} A_{i} \subseteq \mathbb{N}$.
On the other hand, let $x \in \mathbb{N}$. Since $\mathbb{N}=A_{1}, \quad x \in \bigcup_{n=1}^{\infty} A_{n}$. Thus, $\mathbb{N} \subseteq \bigcup_{n=1}^{\infty} A_{n}$.
Also,

$$
\bigcap_{A \in \mathcal{L}} A=\bigcap_{n=1}^{\infty} A_{n}=A_{1} \cap A_{2} \cap A_{3} \cap \cdots=\varnothing
$$

Proof: Suppose $x \in \bigcap_{n=1}^{\infty} A_{n}$. Then $x \in A_{n}$ for every n. In particular, $x \in A_{1}=\mathbb{N}$. But then $x \notin A_{x+1}$, which contradicts $x \in A_{n}$ for all $n \in \mathbb{N}$.

So $\bigcap_{n=1}^{\infty} A_{n}$ must be empty.

Ex: Let $A_{n}=\left[\frac{1}{n}, 2\right]$ for each $n \in \mathbb{N}$.

$$
\begin{array}{ll:l}
A_{1}=[1,2] & 0 & 2 \\
A_{2}=\left[\frac{1}{2}, 2\right] & 0 & 2 \\
A_{3}=\left[\frac{1}{3}, 2\right] & 0 & 2
\end{array}
$$

Then $\bigcap_{i=1}^{\infty} A_{n}=[1,2]$.
Proof: Left to you.
And $\bigcup_{i=1}^{\infty} A_{n}=(0,2]$.
Proof: Each $A_{n} \subseteq(0,2]$, so $\bigcup_{i=1}^{\infty} A_{n} \subseteq(0,2]$
Now, let $x \in(0,2]$.
By the Archimedean Property (Bonus Problem \#6), there exists $m \in \mathbb{N}$ such that $\frac{1}{m}<x$.

Thus, $x \in A_{m}=\left[\frac{1}{m}, 2\right]$, and so $x \in \bigcup_{n=1}^{\infty} A_{n}$. That is, $(0,2] \subseteq \bigcup_{n=1}^{\infty} A_{n}$.

