Warm-Up: Let A and B be sets. Show that A = AUB and B = AUB.

HW 19: You showed ANBEA and ANBEB.

Recall:
$$x \in A \cup B \iff (x \in A) \lor (x \in B)$$

 $x \in A \cap B \iff (x \in A) \land (x \in B)$

Many theorems from logic translate directly to theorems about sets.

Lemma: Let A and B be sets. Then for any object x,

Proof: (a)
$$x \notin A \cup B$$
 $\iff \neg (x \in A \cup B)$
 $\iff \neg [(x \in A) \lor (x \in B)]$
 $\iff \neg (x \in A) \land \neg (x \in B)$ DeMorgan
 $\iff (x \notin A) \land (x \notin B)$.

(b) is similar, using the other DeMorgan Law.

Thm (DeMorgan Laws for sets): Let A, B, and S be sets. Then

- (i) $S \setminus (A \cup B) = (S \setminus A) \cap (S \setminus B)$.
- (ii) S \ (A \ B) = (S \ A) \ (S \ B).

Proof: (i) We'll show both containments.

- (=): Let x \(\in S\\(\lambda\) (AUB). Then x \(\in S\\)
 and \(\times AUB\). By the Lemma, \(\times AA\)
 and \(\times B\). So \(\times S\) \(\times S\) A and \(\times S\).
 Thus, \(\times \ell(S\)A) \(\lambda(S\)B)\).
 - (≥): Let x ∈ (S\A) ∩ (S\B). Then x ∈ S\A

 and x ∈ S\B. So x ∈ S and x ∉ A,

 and x ∈ S and x ∉ B. Since x ∉ A and

 x ∉ B, we have x ∉ AUB by He Lemma.

 Thus, because x ∈ S, we have x ∈ S\(AUB).

(ii) is similar.

Similarly, one can prove the following.

Thm (Commutativity of U and 1): Let A and B be sets. Then

- (i) AUB = BUA
- (ii) $A \cap B = B \cap A$.

Thm (Associativity of U and N):

Let A, B, and C be sets. Then

(i) (A U B) U C = A U (B U C)

(ii) (A N B) N C = A N (B N C).

Then (Distributive Laws for sets):

Let A, B, and S be sets. The,

(i) Sn(AUB) = (SnA) U (SnB)

(ii) SU(ANB) = (SUA) n (SUB)

Sets of sets

Notation: We'll often use a script letter to denote a set of sets - i.e. a set, all of whose elements are sets.

Def: Let A be a set of sets. Then

Note: The book unites UA for UA AEA A.

Ex: Let A = { {1,2}, {2,3}, {2,5,6}}. Then

 $\bigcap_{A \in A} A = \{1,2\} \cap \{2,3\} \cap \{2,5,6\} = \{2\}.$

Ex: Let
$$A_n = \{k \in \mathbb{N} \mid k > n\}$$

= $\{n, n+1, n+2, ...\}$

So
$$A_1 = \{1, 2, 3, ...\} = 1N$$

 $A_2 = \{2, 3, 4, ...\}$
 $A_3 = \{3, 4, 5, ...\}$

Then

$$\bigcup_{A \in A} A = \bigcup_{n=1}^{\infty} A_n = A_1 \cup A_2 \cup A_3 \cup \cdots = M.$$

Proof: Let $x \in \mathcal{O}$ A_n . Then $x \in A_n$ for some n.

But $A_n \subseteq N$, so $x \in N$. Thus, \mathcal{O} $A_i \subseteq N$.

On the other hand, let $x \in N$. Since $N = A_1$, $x \in \mathcal{O}$ A_n . Thus, $N \subseteq \mathcal{O}$ A_n .

Also, $\bigcap_{A \in \mathcal{A}} A = \bigcap_{n=1}^{\infty} A_n = A_1 \cap A_2 \cap A_3 \cap \dots = \emptyset.$

Proof: Suppose $x \in \bigcap_{n=1}^{\infty} A_n$. Then $x \in A_n$ for every n. In particular, $x \in A_1 = N$.

But then $x \notin A_{x+1}$, which contradicts $x \in A_n$ for all $n \in \mathbb{N}$.

So \(\hat{n}\) An must be empty.

Ex: Let
$$A_n = \left[\frac{1}{n}, 2\right]$$
 for each $n \in \mathbb{N}$.

$$A_1 = [1, 2]$$
 $A_2 = [\frac{1}{2}, 2]$
 $A_3 = [\frac{1}{3}, 2]$
:

Then
$$\bigcap_{i=1}^{\infty} A_n = [1,2].$$

And
$$0 A_{n} = (0,2).$$

Proof: Each
$$A_n \subseteq (0,2]$$
, so $0 \text{ A}_n \subseteq (0,2]$
Now, let $x \in (0,2]$.
By the Archimedean Property (Bonus
Problem #6), there exists $m \in \mathbb{N}$
such that $\frac{1}{m} < x$.

Thus,
$$x \in A_m = \left[\frac{1}{m}, 2\right]$$
, and so $x \in \mathcal{O} A_n$.
That is, $(0,2] \subseteq \mathcal{O} A_n$.