HW: nent/legible

name at top!

staple or paperclip if necessary

complete sentences

andience is your classmates

collaborate responsibly

Warm-Up: Let P, Q be sentences.

Find a sentence using only the logical connectives - and A which is logically equivalent to PVQ.

De Morgan tells us how - interacts with Un and V.

How do 1 and V interact with each other?

Thm (Distributive Laws) Let P, Q, R be sentences. Then

(a)
$$P \wedge (Q \vee R) = (P \wedge Q) \vee (P \wedge R)$$

(b)
$$P \vee (Q \wedge R) = (P \vee Q) \wedge (P \vee R)$$

Ex: P = "It is a nice day" Q = "I will go for a wolk" R = "I will eat ontside"

Proof of (b): We vent to show these two sentences always have the same truth value.

First, suppose PV (QAR) is true. Then either

·P is true

· Q A R is true, which mems both Q and R

are true

(or both).

In either case, PVQ is the and PVR is the, so (PVQ) 1 (PVR) is the.

The other possibility is that PV (QAR) is false. This means that both

· P is Inlse

and

· QAR is false, which in thron means at least one of Q or R is false.

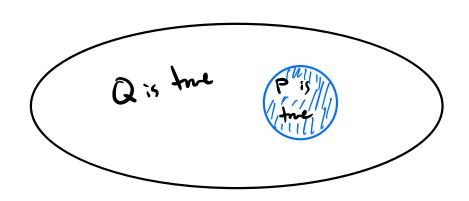
But then at least one of PVQ or PVR is fulse. So (PVQ) 1 (PVR) is fulse.

As a touth table:

P	Q	R	QAR	PV(QAR)	PVQ	PVR	(PVQ)1(PVR)
7	7	-1	+	1	7	+	—
T	T	F	F	T	T	7	T
7	F	T	F	Τ	+	T	T
7	F	F	F	T	T	T	Т
F	T	T	T	T	T	7	T
F	7	F	F	F	T	F	F
F	Ŧ	T	F	F	F	T	F
F	F	F	F	F	F	F	F

Another logical connective:

4) Implication: => means "implies" or "if-then"


P => Q menns "if P is true, then Q is true"

P	Q	$P \Rightarrow Q$
T	7	7
T	F	F
F	T	T
F	F	一

Why do the last 2 rous make sense?

Another perspective:

P => Q is true when Q is "at least as true" as P.

Ex: If it's raining, Hen the ground is net. T

If x=3, Hen $x^2=9$. T

If $x^2=9$, Hen x=3. F

If 0>1, Hen 32=9. T

If 0>1, Hen the sun will explode today at 5 pm.

Note: • If P is false, then P => Q is true.

• If Q is true, then P => Q is true.

In fact,

Prop: Let P and Q be sentences. Then $P \Rightarrow Q = \neg P \vee Q$

Proof: The only situation in which P=>Q
is false is if P is true and
Q is false.

This is precisely when ¬PVQ is false.

In all other cases, both P=>Q and ¬P vQ are true.

Alternatively,

P	Q	P⇒Q	<u>م</u> ۲	¬P V Q
7	+	+	F	7
T	F	F	F	F
F	Τ	T	T	7
F	F	T	Т	T