Functions
"Def": Let $A$ and $B$ be sets. A function $f: A \rightarrow B$ is a rule which associates to each $x \in A$ an element $f(x) \in B$.

- $A$ is the domain of $f$, written $A=\operatorname{Dom}(f)$. (the set of all valid inputs)
We might say $f$ is a function on $A$.
- $B$ is the target or codomsin of $f$. (a set containing all possible outputs)
- For $x \in A, f(x)$ is the value of $f$ at $x$. [ $f$ is the function, $f(x)$ is an element of $B$ ]
-The word map is a synonym for function.

Note that to define a function, we must specify both the domain and the target.

Ex: Let $A=\{a, b, c, d\}$. Define $f: A \rightarrow \mathbb{Z}$ by

$$
f(a)=2, \quad f(b)=3, \quad f(c)=1, \quad f(d)=1 .
$$

When the domain is finite, like it is here, we can represent the function as a table.

| Doming viable |  |
| :--- | :--- |
| $\downarrow$ | $f(x)$ |
| $a$ | 2 |
| $b$ | 3 |
| $c$ | 1 |
| $d$ | 1 |

Ex: Consider the functions

$$
\begin{array}{lll}
f: \mathbb{R} \rightarrow \mathbb{R} & \text { given by } & f(x)=x^{2} \\
g: \mathbb{R} \rightarrow[0, \infty) & & g(x)=x^{2} \\
h: \mathbb{R} \rightarrow[-2, \infty) & & h(x)=x^{2} \\
i:[0, \infty) \rightarrow[0, \infty) & i(x)=x^{2} \\
j:[1,2] \rightarrow \mathbb{R} & & j(x)=x^{2} \\
k:[1,2] \rightarrow[1,4] & \cdots & k(x)=x^{2}
\end{array}
$$

Q: Why can't we add
$l:[1,3] \rightarrow[1,5]$ given $b_{y} \quad l(x)=x^{2}$ to this list?

Def: We say two functions $f$ and $g$ are equal if
(1) $\operatorname{Dom}(f)=\operatorname{Dom}(g)$
(2) For every $x \in \operatorname{Dom}(f), \quad f(x)=g(x)$.

In this case we write $f=g$. Tequality of values
$T$ equality of functions

Ex: In the previous example, we have 3 functions up to equality: $f=g=h, i$, and $j=k$.

Def: Let $f: A \rightarrow B$ be a function. The range of $f$, denoted $R_{n g}(f)$, is the set

$$
\operatorname{Rng}(f)=\{y \in B \mid f(x)=y \text { for some } x \in A\}
$$

Note: $R_{n g}(f) \subseteq B$ automatically.

Informally, $R_{n g}(f)$ is the set of all function values.

