Recall: The range of a function $f: A \rightarrow B$
is

$$
R_{n g}(f)=\{y \in B \mid y=f(x) \text { for some } x \in A\} \text {. }
$$

Ex: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{2}$.
Then $\operatorname{Rng}(f)=[0, \infty)$.
Proof: ($($) Let $y \in R n g(f)$. Then $y \in \mathbb{R}$ and $y=f(x)$ for some $x \in \mathbb{R}$. Thus $y=x^{2} \geq 0$, So $y \in[0, \infty)$.
(2) Let $y \in[0, \infty)$. Then $y \geqslant 0$, so $\sqrt{y} \in \mathbb{R}$.

Set $x \in \sqrt{y}$. We have

$$
f(x)=x^{2}=(\sqrt{y})^{2}=y \text {, }
$$

which shows that $y \in[0, \infty)$.

Warm-Up: Let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z}$ be given by

$$
\begin{gathered}
f(m, n)=m-n . \\
\text { eeg. } f(1,3)=-2, \quad f(3,1)=2 .
\end{gathered}
$$

Show that $R_{n g}(f)=\mathbb{Z}$.

Ex: Let S be any set. Define a function

$$
i d_{s}: S \rightarrow s
$$

by $i d_{s}(x)=x$ for all $x \in S$.
This is culled the identity function on S.

Graphs
Ex: For $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{3}-2$,
the graph of f is the graph of f is

What is this? It's

$$
\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid \quad y=x^{3}-2\right\} .
$$

Def: Let $f: A \rightarrow B$ be a function. The graph of f is

$$
G_{\operatorname{raph}}(f)=\{(x, y) \in A \times B \quad \mid \quad y=f(x)\} .
$$

Observe: For each $x \in A$, there is a unique $y \in B$ such that $(x, y) \in \operatorname{Graph}(f)$, namely $y=f(x)$. "vertical line test"

Def: Let A and B be sets. A function $f: A \rightarrow B$ is a subset

$$
\operatorname{Graph}(f) \subseteq A \times B
$$

with the property that for all $x \in A$, there exists a unique $y \in B$ such that $(x, y) \in \operatorname{Graph}(f)$.

If $(x, y) \in \operatorname{Graph}(f)$, unite $f(x)=y$.

Note: - You don't have to use this definition. But it's more concrete than defining a function as a "rule".

- We carit always draw $\operatorname{Graph}(f)$.

$$
\text { - } \operatorname{Rng}(f)=\{y \in B \mid(x, y) \in \operatorname{Graph}(f)\} .
$$

Function Composition
Def: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. The composition of g with f is the function

$$
g \circ f: A \rightarrow C
$$

given by
$(g \circ f)(a)=g(f(a)) \quad " g$ after $f "$ for all $a \in A$.

Ex: $\quad \begin{aligned} & f: \mathbb{R} \rightarrow \mathbb{R} \\ & g: \mathbb{R}\end{aligned}$ given by $f(x)=2^{x}$
$g: \mathbb{R} \rightarrow \mathbb{R}$ given by $g(x)=x^{2}$.
Then $(g \circ f)(x)=\left(2^{x}\right)^{2}=2^{2 x}=4^{x}$
and

$$
(f \circ g)(x)=2^{\left(x^{2}\right)}
$$

$\begin{aligned} g \circ f \neq f \circ g, \quad \text { since } \quad(g \circ f)(1) & =4 \\ (f \circ g)(1) & =2\end{aligned}$
Order matters!

Note:-Read compositions from right to left

- Sometimes, gof is defined but fog is not

Picture:
(A) $\underset{g \circ f}{f}(B) \xrightarrow{g}(C)$

The: Let $f: A \rightarrow B, g: B \rightarrow C$, and $h: C \rightarrow D$ be functions. Then

$$
(h \circ g) \circ f=h \circ(g \circ f)
$$

Proof idea: Both are given by $x \mapsto h(g(f(x)))$.

