Ex: Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be given by $f(x) = x^2$.
Then $\operatorname{Rng}(f) = [0, \infty)$.
Proof: (=) Let $y \in \operatorname{Rng}(f)$. Then $y \in \mathbb{R}$ and $y = f(x)$
for some $x \in \mathbb{R}$. Thus $y = x^2 \ge 0$,
so $y \in [0, \infty)$.
(=) Let $y \in [0, \infty)$. Then $y \ge 0$, so $Jy \in \mathbb{R}$.
Set $x \in Jy$. We have
 $f(x) = x^2 = (Jy)^2 = y$,
which shows that $y \in [0, \infty)$.

Warm-Up: Let
$$f: N \times N \rightarrow \mathbb{Z}$$
 be given by
 $f(m,n) = m-n$.
e.g. $f(1,3) = -2$, $f(3,1) = 2$.
Show that $Rng(f) = \mathbb{Z}$.

Ex: Let S be any set. Define a function $id_s: S \rightarrow S$ by $id_s(x) = x$ for all $x \in S$. This is called the <u>identity function</u> on S.

Def: Let
$$f: A \rightarrow B$$
 be a function.
The graph of f is
 $Graph(f) = \{(x,y) \in A \times B \mid y = f(x)\}.$

Observe: For each xEA, there is a unique yEB such that (x,y) E Graph(f), namely y=f(x). "vertical line test"

Function Composition
Def: Let
$$f: A \rightarrow B$$
 and $g: B \rightarrow C$
be functions. The composition of
 g with f is the function
 $gof: A \rightarrow C$
given by
 $(gof)(a) = g(f(a))$ "g after f "
for all $a \in A$.

Ex:
$$f: \mathbb{R} \to \mathbb{R}$$
 given by $f(x) = 2^{x}$
 $g: \mathbb{R} \to \mathbb{R}$ given by $g(x) = x^{2}$.
Then $(g \circ f)(x) = (2^{x})^{2} = 2^{2x} = 4^{x}$
and $(f \circ g)(x) = 2^{(x^{2})}$
 $g \circ f \neq f \circ g$, Since $(g \circ f)(1) = 4$
 $(f \circ g)(1) = 2$

Note: Read compositions from right to left · Sometimes, got is defined but fog is not A B C Picture :

Thm: Let f:A >B q: B >> C, and h: C > D be functions. Then $(h \circ q) \circ f = h \circ (q \circ f)$

Proof idea: Both are given by $x \mapsto h(g(f(x)))$.