Surjections

Def: Let f:A -> B be a function.

We say f is a <u>surjection</u> if
for all yeB, there exists xeA

such that f(x)=y.

Also say: f is <u>surjective</u>, f is <u>onto</u>.

Equivalently: f: A -B is surjective (Rng(f) = B

Ex: Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^3$. Then f is a surjection.

Proof: Let $y \in \mathbb{R}$. Set $x = 3y \in \mathbb{R}$. Then $f(3y) = (3y)^3 = y.$

Ex: Let q: IR > IR be given by g(x) = x².
Then q is not surjective.

Proof: Consider - | ER. Then for all $x \in \mathbb{R}$, $g(x) = x^2 \neq -1$.

Note: f Surjective (YyeB)(3xeA)(f(x)=y)

f not surjective (YeB)(VxeA)(f(x)=y).

Ex: However, h: $\mathbb{R} \to (0,\infty)$ given by $h(x) = x^2$ is surjective.

Injections

Def: A function $f: A \rightarrow B$ is an injection if for all $x_1, x_2 \in A$, if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

Also say: f is injective, f is one-to-one.

Ex: $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^3$ is an injection.

Proof: Let $x_1, x_2 \in \mathbb{R}$ and suppose $x_1^3 = x_2^3$. Then $3\sqrt{x_1^3} = 3\sqrt{x_2^3}$, i.e. $x_1 = x_2$.

Ex: g:
$$\mathbb{R} \to \mathbb{R}$$
 given by $g(x) = x^2$ is not an injection.

Proof: Consider -1,
$$1 \in \mathbb{R}$$
. Then $-1 \neq 1$, but $g(-1) = (-1)^2 = 1 = (1)^2 = g(1)$.

Note:
$$f$$
 injective $\iff (\forall x_1, x_2 \in A)[f(x_1) = f(x_2) \implies x_1 = x_2]$
 $\iff (\forall x_1, x_2 \in A)[x_1 \neq x_2 \implies f(x_1) \neq f(x_2)]$

f not injective
$$\iff$$
 $(\exists x_1, x_2 \in A) [x_1 \neq x_2 \text{ and } f(x_1) = f(x_2)]$

Bijections

Def: A function $f: A \rightarrow B$ is a bijection if it is both a surjection and an injection.

f surjective \iff $(\forall y \in B)(\exists x \in A)[f(x)=y]$

f injective $\iff (\forall x_1, x_2 \in A) [f(x_1) = f(x_2) \implies x_1 = x_2]$ $\iff (\forall y \in B) (\forall x_1, x_2 \in A) [f(x_1) = y \land f(x_2) = y)$ $\implies x_1 = x_2$

Together, re get the following:

Lemma: Let fiA - B be a function. Then f is a bijection if and only if for every yEB, there exists a unique xEA such that f(x)=y.

Ex: $f: \mathbb{Z} \to \mathbb{Z}$. For each $y \in \mathbb{Z}$, there is a unique $x \in \mathbb{Z}$ such that f(x) = y, namely x = y - 1.

Inverse Functions

A bijection $f: A \rightarrow B$ gives us a rule for going back to B from A. Specifically, yeB can map back to the unique $x \in A$ such that f(x) = y.

Def: Let $f:A \rightarrow B$ be a bijection. The inverse function of f is $f^{-1}: B \rightarrow A$

defined as follows: For each $y \in B$, f'(y) is the unique element $x \in A$ such that f(x) = y.

That is $f^{-1}(y) = x \Leftrightarrow y = f(x)$.

Ex: $f: \mathbb{R} \to (0,\infty)$ given by $f(x) = e^x$ is a bijection.

 f^{-1} : $(0,\infty) \rightarrow \mathbb{R}$ is given by $f^{-1}(y) = \ln(y)$. $\ln(y) = x \Leftrightarrow y = e^{x}$

$$E_X$$
: $g: [0, \infty) \rightarrow [0, \infty)$ is a bijection.

Its inverse is
$$g^{-1}: [0,\infty) \rightarrow [0,\infty)$$

 $y \mapsto y$

$$\sqrt{y} = x \iff y = x^2$$
and $x \ge 0$

$$Sin^{-1}(y) = x$$
 \iff $y = Sin(x)$
and $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$