Surjection
Def: Let $f: A \rightarrow B$ be a function. We say f is a surjection if for att $y \in B$, there exists $x \in A$ such that $f(x)=y$.
Also say: f is surjective, f is onto.
Equivalently: $f: A \rightarrow B$ is surjective $\Leftrightarrow R_{n g}(f)=B$
Ex: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{3}$.
Then f is a surjection.
Proof: Let $y \in \mathbb{R}$. Set $x=\sqrt[3]{y} \in \mathbb{R}$. Then

$$
f(\sqrt[3]{y})=(\sqrt[3]{y})^{3}=y .
$$

Ex: Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be given by $g(x)=x^{2}$. Then g is not surjective.
Proof: Consider $-\mid \in \mathbb{R}$. Then for all $x \in \mathbb{R}$, $g(x)=x^{2} \neq-1$.

Note: f Surjective $\Leftrightarrow(\forall y \in B)(\exists x \in A)(f(x)=y)$
f not surjective $\Leftrightarrow(\exists y \in B)(\forall x \in A)(f(x) \neq y)$.
Ex: Hoverer, $h: \mathbb{R} \rightarrow[0, \infty)$ given by $h(x)=x^{2}$ is surjective.

Injections
Def: A function $f: A \rightarrow B$ is an injection if for all $x_{1}, x_{2} \in A$, if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$.

Also say: f is injective, f is one-to-one.

Ex: $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{3}$ is an injection.

Proof: Let $x_{1}, x_{2} \in \mathbb{R}$ and suppose $x_{1}^{3}=x_{2}^{3}$. Then $\sqrt[3]{x_{1}^{3}}=\sqrt[3]{x_{2}^{3}}$, i.e. $x_{1}=x_{2}$.

Ex: $g: \mathbb{R} \rightarrow \mathbb{R}$ given by $g(x)=x^{2}$ is not an injection.

Proof: Consider $-1,1 \in \mathbb{R}$. Then $-1 \neq 1$, but

$$
g(-1)=(-1)^{2}=1=(1)^{2}=g(1) .
$$

$$
\Leftrightarrow\left(\forall x_{1}, x_{2} \in A\right)\left[\begin{array}{c}
x_{1} \neq x_{2} \\
T
\end{array} \underset{F}{\left.f\left(x_{1}\right) \neq f\left(x_{2}\right)\right]}\right.
$$

f not injective $\Leftrightarrow\left(\exists x_{1}, x_{2} \in A\right)\left[x_{1} \neq x_{2}\right.$ and $\left.f\left(x_{1}\right)=f\left(x_{2}\right)\right]$

Ex: However, $h:[0, \infty) \rightarrow \mathbb{R}$ given by $h(x)=x^{2}$ is injectile.

Bisections
Def: A function $f: A \rightarrow B$ is a bijection if it is both a surjection and an injection.
f surjective $\Longleftrightarrow(\forall y \in B)(\exists x \in A)[f(x)=y]$
f injective $\Leftrightarrow\left(\forall x_{1}, x_{2} \in A\right)\left[f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}\right]$

$$
\begin{array}{r}
\Leftrightarrow(\forall y \in B)\left(\forall x_{1}, x_{2} \in A\right)\left[\left(f\left(x_{1}\right)=y \wedge f\left(x_{2}\right)=y\right)\right. \\
\left.\Rightarrow x_{1}=x_{2}\right]
\end{array}
$$

Together, we get the following:

Lemma: Let $f: A \rightarrow B$ be a function. Then f is a bijection if and only if for every $y \in B$, there exists a unique $x \in A$ such that $f(x)=y$.

Ex: $f: \mathbb{Z} \rightarrow \mathbb{Z}$. For each $y \in \mathbb{Z}$, there is a unique $x \in \mathbb{Z}$ such that $f(x)=y$, namely $x=y-1$.

Inverse Functions
A bijection $f: A \rightarrow B$ gives us a mule for going back to B from A. Specifically, $y \in B$ can map buck to the unique $x \in A$ such that $f(x)=y$.

Def: Let $f: A \rightarrow B$ be a bijection. The inverse function of f is

$$
f^{-1}: B \rightarrow A
$$

defined as follows: For each $y \in B$,
$f^{-1}(y)$ is the unique element $x \in A$ $f^{-1}(y)$ is the unique element $x \in A$ such that $f(x)=y$.
That is $f^{-1}(y)=x \Leftrightarrow y=f(x)$.

Ex: $f: \mathbb{R} \rightarrow(0, \infty)$ given by $f(x)=e^{x}$ is a bijection.
$f^{-1}:(0, \infty) \rightarrow \mathbb{R}$ is given by $f^{-1}(y)=\ln (y)$.

$$
\ln (y)=x \Leftrightarrow y=e^{x}
$$

Ex: $\quad \begin{gathered}g:[0, \infty) \longrightarrow[0, \infty) \\ x \longrightarrow x^{2}\end{gathered}$ is a bijection.

$$
x \longmapsto x^{2}
$$

Its inverse is $g^{-1}:[0, \infty) \rightarrow[0, \infty)$

$$
y \longmapsto \sqrt{y}
$$

$$
\sqrt{y}=x \Leftrightarrow y_{\text {and }}=x^{2}
$$

Ex: $\sin : \mathbb{R} \rightarrow \mathbb{R}$ is not a bijection, but $\sin :\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow[1,1]$ is.

Its inverse is $\sin ^{-1}:[-1,1] \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$
\sin ^{-1}(y)=x \quad \Leftrightarrow \quad \begin{aligned}
& y=\sin (x) \\
& \text { and }-\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2}
\end{aligned}
$$

