$$\frac{Warm-U_{p}}{F}: Prove \quad \text{Hat} \\ f: \mathbb{R} \setminus \{3\} \longrightarrow \mathbb{R} \setminus \{1\} \\ \times \longmapsto \stackrel{\times}{\xrightarrow{\times}}_{\xrightarrow{\times} -3}$$

Recall: A bijection
$$f: A \rightarrow B$$
 has an
inverse function $f': B \rightarrow A$, such
that
 $f^{-'}(y) = x \iff f(x) = y$

Ex: Sin: $\mathbb{R} \to \mathbb{R}$ is not a bijection, but sin: $[-\Xi, \Xi] \to [1,1]$ is.

> Its inverse is $\sin^{-1}: [-1,1] \rightarrow [-\frac{\pi}{2}, \frac{\pi}{2}]$ $\sin^{-1}(y) = x \quad (\Longrightarrow \quad y = \sin(x)$ and $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$

Thm: Let
$$f:A \rightarrow B$$
 be a bijection and let
 $f^{-1}:B \rightarrow A$ be its inverse. Then
and ① $f^{-1}\circ f = id_A : A \rightarrow A$
② $f \circ f^{-1} = id_B : B \rightarrow B$
This is essentially a rephrasing of the fundamental
identity $f^{-1}(y) = x \iff T(x) = y$.
Proof: ① Let $x \in A$. We must show
 $(f^{-1}\circ f)(x) = id_A(x) = x$.
Set $y = f(x)$. Then, by definition of f^{-1} ,
 $f^{-1}(y) = x$. But then
 $(f^{-1}\circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x$.

Cor: Let
$$f:A \rightarrow B$$
 be a bijection. Then its
inverse $f^{-1}: B \rightarrow A$ is also a bijection, and
 $(f^{-1})^{-1} = f$.
Proof: Let $f:A \rightarrow B$ be a bijection.
• $\frac{f^{-1}}{1}$ is surjective: Let $x \in A$.
We must find yeB so that $f^{-1}(y) = x$.
Set $y = f(x)$. Then, by the theorem,
 $f^{-1}(y) = f^{-1}(f(x)) = x$.
• $\frac{f^{-1}}{1}$ is injective: Let $y_1, y_2 \in B$ such
that $f^{-1}(y_1) = f^{-1}(y_2)$.
Then
 $f(f^{-1}(y_1)) = f(f^{-1}(y_2))$,
so by the theorem,
 $y_1 = y_2$.
• $(f^{-1})^{-1} = f$: By definition, for $x \in A$ and $y \in B$,
 $(f^{-1})^{-1}(x) = y \iff x = f^{-1}(y) \iff f(x) = y$.
Thus, $(f^{-1})^{-1} = f$.

The following theorems are proved using similar methods.

Thm: Let
$$f: A \rightarrow B$$
 and $g: B \rightarrow A$ be functions.
If
 $g \circ f = id_A$ and $f \circ g = id_B$,
then f is a bijection and $g = f^{-1}$.

Thm: If
$$f: A \rightarrow B$$
 and $g: B \rightarrow C$ are
bijections, then $g \circ f: A \rightarrow C$ is a
bijection also, and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

This is an equivalence relation.

$$\underline{Thm}: Let A, B, C \text{ be sets. Then}$$

$$(D) |A| = |A|. \quad [Reflexive]$$

$$(2) If |A| = |B|, Hen |B| = |A|. \quad [Symmetric]$$

$$(3) If |A| = |B| \text{ and } |B| = |C|, \text{ then } |A| = |C|.$$

$$[Transitive]$$

$$\underline{Proof shetch}: (D) \quad id_A: A \rightarrow A \quad is a \quad bijection.$$

$$x \mapsto x$$

$$(2) If f: A \rightarrow B \quad is a \quad bijection. \text{ then } f^{-1}: B \rightarrow A \quad is a \quad bijection.$$

$$(3) = 0 \quad C: A = B \quad (A = A) \quad (B = A) \quad (A = A) \quad ($$

(3) If
$$f: A \rightarrow B$$
 and $g: B \rightarrow C$ are bijections,
then $gof: A \rightarrow C$ is a bijection.

If A is a set and
$$n \in \mathbb{N}$$
 such that
A and $\{1, 2, ..., n\}$ have the same cardinality,
then we say A has cardinality n (or A has
exactly n elements), and write $|A| = n$.
We also write $|\emptyset| = O$.