We already saw that

$$f: N \longrightarrow N \setminus \{1\}$$

 $\times \longmapsto \times +1$

is a bijection, so $|N| = |N \setminus \{1\}|$.

Here's another example:

$$E_{x}: Le + E = \{n \in IN \mid n \text{ is ann}\} = \{2,4,6,8,...\}.$$
Then
$$g: N \rightarrow E$$

$$x \mapsto 2x$$
is a bijection. Thus, $INI = IE$.
$$Proof: Let x_{1,}x_{2} \in IN. If f(x_{1}) = f(x_{2}), \text{ then}$$

$$2x_{1} = 2x_{2}, \text{ so cancelling the 2 gives}$$

$$x_{1} = x_{2}. Thus, f \text{ is injective.}$$

$$Let y \in E. Then y = 2k \text{ for some } k \in IN$$

$$(M_{ny}?) Thus, f(k) = 2k = y. This \text{ shows}$$
that f is sinjective.

<u>Thm</u>: Let A be a countably infinite set. Then any subset $B \in A$ is countable.

$$E_{X}: N \times N \quad is \quad Countrably \quad infinite$$

$$Key: Write \quad the elements of \quad N \times N \quad in a grid$$

$$\frac{1}{2} \frac{2}{(2,1)} \frac{3}{(2,2)} \frac{4}{(2,3)} \frac{5}{(2,3)} \frac{5}{(2,3$$

Define a bijection
$$f: IN \rightarrow IN \times IN$$
 by reading
along the northeast diagonals in order:
 $f(1) = (1, 1)$
 $f(2) = (2, 1)$
 $f(3) = (1, 2)$
 $f(4) = (3, 1)$

Ex: The set
$$Q_{20} = \{q \in Q \mid q \ge 0\}$$
 of positive
rational numbers is countably infinite.

Key idea: Each $q \in Q_{20}$ can be written uniquely
as $q = \frac{1}{2}$ where
 $as = \frac{1}{2}$ where
 $a, b \in IN$
and $\frac{1}{2}$ is in lowest terms ($qed(a,b) = 1$)

Now, use a grid again, but cross out functions
not in lowest terms:

 $\frac{1}{1} \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{1}{5} \frac{1}{5}$
 $\frac{2}{2} \frac{1}{4} \frac{2}{3} \frac{$

5.

$$h(1) = 0$$

$$h(2) = g(1) = 1$$

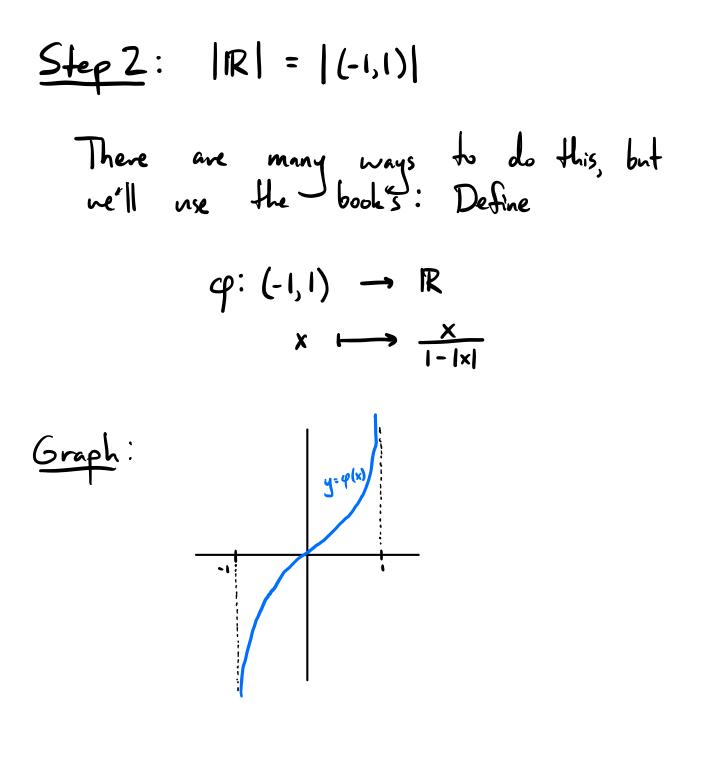
$$h(3) = -g(1) = -1$$

$$h(4) = g(2) = 2$$

$$h(5) = -g(2) = -2$$

Thm: IR = IN (R :s uncountable)

Step 1: If a,b \in R with a < b, then
$$|(a,b)| = |(0,1)|$$
.
We must give a bijection between $(0,1)$ and
 (a,b) .
A linear function will work:
 $f: (0,1) \rightarrow (a,b)$
 $x \rightarrow (b-a)x + a$
Graph:
 $y = (b-a)x + a$
Exercise: Check that f is a bijection.



Exercise: Check that cp is a bijection. (Follows from HW 23 practice problems)

Step 3: There is no surjection
$$N \rightarrow (0,1)$$

(and thus no bijection $N \rightarrow (0,1)$).

Why is this enough? If
$$|N| = |R|$$
, then since
 $|R| = |(-1,1)|$ and $|(-1,1)| = |(0,1)|$, transitivity
gives $|N| = |(0,1)|$, a contradiction.

To show this, we use Cantor's Diagonal
Argument.
Need: Every real number has an infinite
decimal representation.
eg.
$$\frac{1}{3} = 0.3333333 \cdots$$

 $\frac{3}{4} = 0.7500000 \cdots$
 $\pi - 3 = 0.14159265 \cdots$
This representation is unique if we
don't allow infinite repeating 9s.
e.g. $\frac{3}{4} = 0.749999999 \cdots$
= 0.750000000...

Now, let
$$f: N \rightarrow (0, 1)$$
 be a function.
Think of this as an infinite list:

$$C_{1} = f(1) = O. \times_{11} \times_{12} \times_{13} \times_{14} \times_{15} \cdots$$

$$C_{2} = f(2) = O. \times_{21} \times_{22} \times_{23} \times_{24} \times_{25} \cdots$$

$$C_{3} = f(3) = O. \times_{31} \times_{32} \times_{33} \times_{34} \times_{35} \cdots$$

$$C_{4} = f(4) = O. \times_{41} \times_{42} \times_{43} \times_{44} \times_{45} \cdots$$

Define a number
$$C_0$$
 by
 $C_0 = O. X_{o1} X_{o2} X_{o3} X_{o4} X_{o5} \cdots$

where

$$X_{om} = \begin{cases} 1 & \text{if } X_{mm} \neq 1 \\ 2 & \text{if } X_{mm} = 1 \end{cases}$$

Then $C_6 \in (0,1)$, but $C_0 \neq C_1$ because $X_{01} \neq X_{11}$ $C_0 \neq C_2$ " $X_{02} \neq X_{22}$ $C_0 \neq C_2$ " $X_{03} \neq X_{33}$: