Infinite Sets
We already saw that

$$
\begin{aligned}
f: \mathbb{N} & \longrightarrow \mathbb{N} \backslash\{1\} \\
x & \longmapsto x+1
\end{aligned}
$$

is a bijection, so $|\mathbb{N}|=\mid \mathbb{N}\{13 \mid$.
Here's another example:
Ex: Let $E=\{n \in \mathbb{N} \mid n$ is even $\}=\{2,4,6,8, \ldots\}$.
Then

$$
\begin{aligned}
g: & \mathbb{N} \rightarrow E \\
x & \mapsto 2 x
\end{aligned}
$$

is a bijection. Thus, $|\mathbb{N}|=|E|$.
Proof: Let $x_{1}, x_{2} \in \mathbb{N}$. If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $2 x_{1}=2 x_{2}$, so cancelling the 2 gives $x_{1}=x_{2}$. Thus, f is injective.
Let $y \in E$. Then $y=2 k$ for some $k \in \mathbb{N}$ (why?) Thus, $f(k)=2 k=y$. This shows that f is subjective.

Def: A set A is countably infinite if there exists a bijection $f: \mathbb{N} \rightarrow A$. That is, if $|A|=|\mathbb{N}|$.

A set is countable if it is finite or countably infinite.

A set is uncountable if it is not countable.

Ex: \mathbb{N} is countably infinite
$\mathbb{N} \backslash\{1\}$ is countably infinite
$E=\{n \in \mathbb{N} \mid n$ is even $\}$ is countably infinite.
\mathbb{Z} is countably infinite

Think: Countably infinite sets can be enumerated in ax infinite list.

Thu: Let A be a countably infinite set. Then any subset $B \leqslant A$ is countable.

Ex: $\mathbb{N} \times \mathbb{N}$ is countably infinite
Key: Write the elements of $\mathbb{N} \times \mathbb{N}$ in a grid

	1	2	3	4	5	\ldots
1	$(1, \pi)$	$(5,2)$	$(4,3)$	$(4,4)$	$(4,5)$	
2	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	
3	$(3,1)$	$(5,5)$	$(2,3)$	$(3,4)$	$(3,5)$	
4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	
5	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	
\vdots						

Define a bijection $f: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ by reading along the northeast diagonals in order:

$$
\begin{aligned}
& f(1)=(1,1) \\
& f(2)=(2,1) \\
& f(3)=(1,2) \\
& f(4)=(3,1)
\end{aligned}
$$

Ex: The set $\mathbb{Q}_{>0}=\{q \in \mathbb{Q} \mid q>0\}$ of positive rational numbers is countably infinite.

Key idea: Each $q \in \mathbb{Q}_{>0}$ can be written uniquely as $q=\frac{a}{b}$ where

$$
\cdot a, b \in \mathbb{N}
$$

and

- $\frac{a}{b}$ is in lowest terms $(\operatorname{gcd}(a, b)=1)$

Now, use a grid again, but cross out fractions not in lowest terms:

	1	2	3	4	5	\ldots
1	$\frac{1}{1}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$	
2	$\frac{2}{1}$	2	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{5}$	
3	$\frac{3}{1}$	$\frac{3}{2}$	$2 \frac{5}{2}$	$\frac{3}{4}$	$\frac{3}{5}$	
4	$\frac{4}{1}$	$\frac{2}{5}$	$\frac{4}{3}$	4	4	$\frac{4}{5}$
5	$\frac{5}{1}$	$\frac{5}{2}$	$\frac{5}{3}$	$\frac{5}{4}$	$\frac{2}{3}$	
\vdots						.

Define a bijection $g: \mathbb{N} \rightarrow \mathbb{Q}_{>0}$ by reading the remaining entries along the northent diagonals.

$$
g(1)=1, g(2)=2, g(3)=\frac{1}{2}, g(4)=3, g(5)=\frac{1}{3}, \ldots
$$

Ex: \mathbb{Q} is countably infinite.
Let $g: \mathbb{N} \rightarrow \mathbb{Q}_{>0}$ be the bijection above. Define a bijection $h_{i} \mathbb{N} \rightarrow \mathbb{Q}$ by

$$
h(n)= \begin{cases}0 & \text { if } n=1 \\ g\left(\frac{n}{2}\right) & \text { if } n \text { is even } \\ -g\left(\frac{n-1}{2}\right) & \text { if } n \text { is odd }\end{cases}
$$

So

$$
\begin{aligned}
& h(1)=0 \\
& h(2)=g(1)=1 \\
& h(3)=-g(1)=-1 \\
& h(4)=g(2)=2 \\
& h(5)=-g(2)=-2
\end{aligned}
$$

Thm: $|\mathbb{R}| \neq|\mathbb{N}| \quad(\mathbb{R}$ is uncountable)

Step 1: If $a, b \in \mathbb{R}$ with $a<b$, then $|(a, b)|=|(0,1)|$.
We must give a bijection between $(0,1)$ and (a, b).

A linear function will work:

$$
\begin{aligned}
f:(0,1) & \longrightarrow(a, b) \\
x & \longrightarrow(b-a) x+a
\end{aligned}
$$

Graph:

Exercise: Check that f is a bijection.

Step 2: $\quad|\mathbb{R}|=|(-1,1)|$
There are many ways to do this, but nell use the book's: Define

$$
\begin{aligned}
\varphi:(-1,1) & \rightarrow \mathbb{R} \\
x & \longmapsto \frac{x}{1-|x|}
\end{aligned}
$$

Graph:

Exercise: Check that φ is a bijection. (Follows from HW 23 practice problems)

Step 3: There is no surjection $\mathbb{N} \rightarrow(0,1)$ (and thus no bijection $\mathbb{N} \rightarrow(0,1))$.

Why is this enough? If $|\mathbb{N}|=|\mathbb{R}|$, then since $|\mathbb{R}|=|(-1,1)|$ and $|(-1,1)|=|(0,1)|$, transitivity gives $|\mathbb{N}|=|(0,1)|$, a contradiction.

To show this, we use Cantor's Diagonal Argument.

Need: - Every real number has an infinite decimal representation.

$$
\text { eg. } \begin{aligned}
\frac{1}{3} & =0.3333333 \cdots \\
\frac{3}{4} & =0.7500000 \cdots \\
\pi-3 & =0.14159265 \cdots
\end{aligned}
$$

- This representation is unique if we don't allow infinite repeating is.

$$
\text { eeg. } \begin{aligned}
\frac{3}{4} & =0.749999999 \ldots \\
& =0.750000000 \ldots
\end{aligned}
$$

Now, let $f: \mathbb{N} \rightarrow(0,1)$ be a function. Think of this as an infinite list:

$$
\begin{aligned}
& c_{1}=f(1)=0 . x_{11} x_{12} x_{13} x_{14} x_{15} \cdots \\
& c_{2}=f(2)=0 . x_{21} x_{22} x_{23} x_{24} x_{25} \cdots \\
& c_{3}=f(3)=0 . x_{31} x_{32} x_{33} x_{34} x_{35} \cdots \\
& c_{4}=f(4)=0 . x_{11} x_{12} x_{43} x_{44} x_{45} \cdots
\end{aligned}
$$

$x_{n m}=$ m th digit of nth number
Define a number c_{0} by

$$
c_{0}=0 . x_{01} x_{02} x_{03} x_{04} x_{05} \cdots
$$

where

$$
x_{o m}= \begin{cases}1 & \text { if } \quad x_{m m} \neq 1 \\ 2 & \text { if } \quad x_{m m}=1\end{cases}
$$

Then $c_{0} \in(0,1)$, but

$c_{0} \neq c_{1}$	because	$x_{01} \neq x_{11}$
$c_{0} \neq c_{2}$	\cdot	$x_{02} \neq x_{22}$
$c_{0} \neq c_{3}$	\cdot	$x_{03} \neq x_{33}$

Thus, $\operatorname{co} \not \operatorname{Rng}(f)$, so f is not surjective.

