

 $E_{\mathbf{x}}: \mathbf{x}^2 = 9 \iff \mathbf{x} = 3 \text{ or } \mathbf{x} = -3$ This sentence is true. Why? Let P be " $x^2 = 9$ " and Q be "x=3 or x=-3." We'll show $P \Rightarrow Q$ and $Q \Rightarrow P$ are both true. $P \Rightarrow Q$ <u>Case</u> I: P is true. Then x² = 9, so $x^2 - 9 = 0.$ Factor to get (x-3)(x+3) = 0. Hence, x-3=0 or x+3=0. That is, x=3 or x=-3, so Q is true. Case Z: P is filse. Then P=>Q is vacuously true.

 $Q \Rightarrow P$

Case 1: Q is true. Then x=3 or x=-3, so $x^{2}=3^{2}=9$ or $x^{2}=(-3)^{2}=9$. That is, P is true. r Case 2: Q is fulse. Then $Q \Rightarrow P$ is vacuously true.

Conditional Proof
In general, to show
$$P \Rightarrow Q$$
 is true,
we must
① Assume P is true.
② Under this assumption, show that Q must
be true also.
Why is this valid?
When P is talse, $P \Rightarrow Q$ is automatically true.
This method is called conditional
proof.
Most of our theorems will be of the
form $P \Rightarrow Q$, so we will write a
lot of conditional proofs.
To prove a biconditional $P \Leftrightarrow Q$, we
need two conditional $P \Leftrightarrow Q$, we
and $Q \Rightarrow P$.

antologies

A sentence is called a tantology if it is always true for structural reasons (i.e. because of how it is constructed using \neg , \land , \lor , \Rightarrow , and \Leftrightarrow).

Ex: "Modus ponens"

$$(P \Rightarrow Q) \land P \Rightarrow Q$$

is a tautology.

Modus ponens is a common step in logical reasoning. Ex: If it is raining, then the ground is net. It is raining. Therefore, the ground is net.