Warm-Up: Show that the sentence

$$
(P \wedge Q) \Rightarrow P
$$

is a tautology - that is, it is true regardless of the sentences P and Q.
Do this (1) Using a truth table.
(2) By writing a conditional proof.

Another perspective on conditional proof:
To prove $A \Rightarrow C$ is true, it is enough to show that it is impossible for A to be true and C to be simultaneously false.
To do this, either

- Assume A is true and show C must OR also be true.
- Assume C is false and show A must also be false. [ie. prove $\neg C \Rightarrow \neg A$]

More tautologies
Ex: $P \vee \neg P$ is a tautology.
"The law of the excluded middle."

Ex: Show that the sentence

$$
[(P \Rightarrow Q) \wedge(Q \Rightarrow R)] \Rightarrow(P \Rightarrow R)
$$

is a tautology. "Hypothetical syllogism"
Proof: Suppose $(P \Rightarrow Q) \wedge(Q \Rightarrow R)$ is true. Thus, $P \Rightarrow Q$ and $Q \Rightarrow R$ are both true.

We want to argue that $P \rightarrow R$ must be true.

Assume P is true. $\left[\begin{array}{ll}\text { If } & \text { not, } P \Rightarrow Q \\ \text { and } & \text { we are done the vacuously }\end{array}\right]$
Since $P \Rightarrow Q$ and P are both true, Q must be true.

Since $Q \Rightarrow R$ and Q are both true, R must be true.

Therefore, $P \Rightarrow R$ is true, as desired.

Recall: The truth value of the sentence "If $x y>0$, then $x>0$ and $y>0$ " depends on the numerical values of x and y.

We said it is false because it can be false (e.g. $x=-1, y=-1$), but it can also be true (e.g. $x=1, y=1$ or $x=-1, y=1$).

Quantifiers let us discuss such situations.

Quantifiers
The universal quantifier is \forall, which means "for all."

If $P(x)$ is a sentence involving the variable x, then $(\forall x) P(x)$ is the sentence
"for all $x, \quad P(x)$ "
also read as
"for every $x, P(x)$ "
"for each $x, P(x)$ "
"for any $x, P(x)$."

The existential quantifier is \exists, which means "there exists."
$(\exists x) P(x)$ is the sentence
"there exists x such that $P(x)$ " also read as
"for some $x, P(x)$ "
"for at least one $x, P(x)$."

Note:- A quantifier (\forall, \exists) is always "attached" to a variable, catted the bound variable.

- A quantifier is always followed by a sentence involving the bound variable.

Ex: Let $P(x)$ be the sentence

$$
"(x>1) \Rightarrow\left(x^{2}>1\right) "
$$

and let $Q(x)$ be the converse

$$
"\left(x^{2}>1\right) \Rightarrow(x>1)
$$

Then $\cdot(\forall x) P(x)$ is true.

- $(\exists x) P(x)$ is true.
- $(\forall x) Q(x)$ is false.
- $(\exists x) Q(x)$ is true.

Note: We should be more careful to specify which values the bound variable is allowed to take on.

The above statements are correct when x can be any real number.

To indicate this, we will write $(\forall x \in \mathbb{R})$ and $(\exists x \in \mathbb{R})$.

