Warm-Up: For each sentence, draw a number line and indicate all x-values making the sentence true.
(a) $(x>2) \wedge\left(x^{2}>4\right)$
(b) $(x>2) \vee\left(x^{2}>4\right)$
(c) $(x>2) \Rightarrow\left(x^{2}>4\right)$
(d) $(x>2) \Longleftrightarrow\left(x^{2}>4\right)$

Last time: \forall and \exists.

Ex: Which statements are true?
(1) $(\exists x \in \mathbb{R})(x+4=9)$

True: $x=5$.
(2) $(\exists x \in \mathbb{R})[(x+4=9) \wedge(x \neq 5)]$

False: $x+4=9 \Rightarrow x=9-4=5$
(3) $(\forall x \in \mathbb{R})(x+4=9)$

False: Try $x=0$.
(4) $(\exists x \in \mathbb{R})\left(x^{2}+6 x+8 \geqslant 0\right)$

True: Try $x=0$.
(5) $(\forall x \in \mathbb{R})\left(x^{2}+6 x+8 \geq 0\right)$

Can guess and check, or complete the square:

$$
\begin{aligned}
x^{2}+6 x+8 & =x^{2}+6 x+9-1 \\
& =(x+3)^{2}-1
\end{aligned}
$$

False: Try $x=-3$.
(6) $(\forall x \in \mathbb{R})\left(x^{2}+6 x+10 \geq 0\right)$

True: $x^{2}+6 x+10=(x+3)^{2}+1 \geqslant 1>0$ for all real numbers x.

Observe: - A single example proves a \exists statement.

- A single counterexample disproves a \forall statement.
- To prove a \forall statement or disprove a \exists statement, we need an argument that works for all values.

Free + Bound Variables
Let $P(x)=" x^{2}+6 x+8 \geqslant 0$."

- Is $P(x)$ true? It depends on x.

We say that x is a free variable in the sentence $P(x)$.

Think: The sentence $P(x)$ is a function of x.

- Is $(\forall x \in \mathbb{R}) P(x)$ time? No!

This sentence does NOT depend on x, because of the quantifier \forall.

In this case, we say x is a bound variable in the sentence $(\forall x \in \mathbb{R}) P(x)$.

The quantifier \exists can also bound variables: $(\exists x) P(x)$ does not depend on x.

Analogy: $f(x)=x^{2}$ vs. $\int_{0}^{1} x^{2} d x$

Note: When we use a quantifier (\forall or \exists), a bound variable is ranging over a universe of possibilities.

Usually, we should be explicit about this. Common choices:
$\mathbb{Z}=$ the set of integers
$\mathbb{Q}=$ the set of rational numbers
$\mathbb{R}=$ the set of real numbers
$\mathbb{C}=$ the set of complex numbers
The universe matters!

Ex: $(\exists x)\left(x^{2}=2\right) \quad$ Ambiguous
$(\exists x \in \mathbb{Z})\left(x^{2}=2\right) \quad$ False, $\sqrt{2} \notin \mathbb{Z}$
$(\exists x \in \mathbb{R})\left(x^{2}=2\right) \quad$ True, $\sqrt{2} \in \mathbb{R}$
Ex: $(\forall x \in \mathbb{R})\left(x^{2} \geqslant 0\right) \quad$ True
$(\forall x \in \mathbb{C})\left(x^{2} \geqslant 0\right) \quad$ False, $\sqrt{-1} \in \mathbb{C}$

Note: Over a finite set (universe),

- \forall is an "and" statement
- \exists is an "or" statement

Ex: If $A=\{-3,1,4\}$, then

$$
\begin{aligned}
& (\forall x \in A)\left(x^{2}<20\right) \equiv\left((-3)^{2}<20\right) \wedge\left(1^{2}<20\right) \wedge\left(4^{2}<20\right) \\
& (\exists x \in A)(x>0) \equiv(-3>0) \vee(1>0) \vee(4>0)
\end{aligned}
$$

(Both true)

For this reason, we can think of \forall as "generalized and" and \exists as "generalized or."

Thu (Generalized DeMorgan's Laws)
(a) $\neg[(\forall x \in A) P(x)] \equiv(\exists x \in A)(\neg P(x))$
(b) $-[(\exists x \in A) P(x)] \equiv(\forall x \in A)(\neg P(x))$

Proof: (a) Suppose $\neg[(\forall x \in A) P(x)]$ is tine. Then $(\forall x \in A) P(x)$ is false.

So there is some $x_{0} \in A$ such that $P\left(x_{0}\right)$ is false, ie. $\neg P\left(x_{0}\right)$ is true.
Hence $(\exists x \in A)(\neg P(x))$ is true.
Conversely, suppose $(\exists x \in A)(\neg P(x))$ is time.
Then there is $x_{0} \in A$ such that $\neg P\left(x_{0}\right)$ is time, i.e. $P\left(x_{0}\right)$ is false.

So $(\forall x \in A) P(x)$ is false. Therefore, $\rightarrow(\forall x \in A) P(x)$ is tue.
(b) is similar (see book).

