Warm-up: What is the difference between (a) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x \in y)$ (b) $(\exists y \in \mathbb{R})(\forall x \in \mathbb{R})(x \in y)$? Is either true?

Last time:

 $(\exists_{Y} \in B)(\forall_{x} \in A) P(x,y) \Rightarrow (\forall_{x} \in A)(\exists_{Y} \in B) P(x,y)$

Unique Existence
The unique existential quantifier is 31:
(3! xeA) P(x) means
"There exists a unique (i.e. one and only
one) x eA such that P(x)."
Note: 3! is "generalized exclusive or"
Ex: () (3! x e R)(x²=0)
True: x²=0
$$\Leftrightarrow$$
 x=0.
(2) (3! x e R)(x²=2)
False: x = JZ and x=-JZ each
satisfy x²=2.
Uniqueness fields.
(3) (3! x e R)(x²=-2)
False: x²=-2 has no solutions in R.
Existence fails.