EXAM 2 PRACTICE PROBLEMS

- 1. Let $d, n \in \mathbb{N}$. Use the definition of divisibility to show that if d|n, then $d \leq n$.
- 2. Let $a, b \in \mathbb{Z}$. Use the definition of divisibility to show that if a|b, then $a^2|b^2$.
- 3. Let a, b, q, r be integers such that a = bq + r. Prove that gcd(a, b) = gcd(b, r).
- 4. Let $d \in \mathbb{N}$ and $n \in \mathbb{Z}$. Show that if d|n and d|(n+1), then d = 1.
- 5. Use the Euclidean algorithm to compute gcd(84, 135).
- 6. (a) Use the Euclidean algorithm to compute gcd(30, 72).
 - (b) Find integers $x, y \in \mathbb{Z}$ such that 30x + 72y = 6.
 - (c) Do there exist integers $x, y \in \mathbb{Z}$ such that 30x + 72y = 48?
 - (d) Do there exist integers $x, y \in \mathbb{Z}$ such that 30x + 72y = 16?
- 7. Find integers x and y such that 162x + 31y = 1.
- 8. Let n be an even integer. Prove that there exist unique integers $q, r \in \mathbb{Z}$ such that

$$n = 6q + r$$

and $r \in \{0, 2, 4\}$.

- 9. Make addition and multiplication tables for arithmetic
 - (a) modulo 2.
 - (b) modulo 3.
 - (c) modulo 4.
 - (d) modulo 5.
- 10. Without using a calculator, find the natural number k such that $0 \le k \le 14$ and k satisfies the given congruence.
 - (a) $2^{75} \equiv k \mod 15$
 - (b) $6^{41} \equiv k \mod 15$
 - (c) $140^{874} \equiv k \mod 15$
- 11. Without using a calculator, show that 15 divides $37^{42} 38^{90}$.

- 12. (a) Check that $r^3 \equiv r \mod 6$ for every integer r such that $0 \leq r \leq 5$.
 - (b) Use part (a) to prove that $n^3 \equiv n \mod 6$ for every integer n.
 - (c) If x is a real number such that $x^3 = x$, then either x = 0 or we can divide by x to get $x^2 = 1$ (from which we conclude x = 1 or x = -1). Given the result of part (b), we might wonder if similar reasoning implies that for every integer n, either $n \equiv 0 \mod 6$ or $n^2 \equiv 1 \mod 6$. Is this true?
- 13. Use induction to prove that

$$7^n \equiv 1 + 6n \mod 9$$

for every $n \in \mathbb{N}$.

- 14. (a) Let $x \in \mathbb{Z}$ and let p be a prime number. Prove that if p does not divide x, then gcd(p, x) = 1.
 - (b) Show that there exists $x \in \mathbb{Z}$ such that 12 does not divide x and $gcd(12, x) \neq 1$. Why does this not contradict the result of part (a)?
- 15. Let P be the sentence

For all $a, b \in \mathbb{Z}$, if a|b then $a|(b+5a^2)$.

Let Q be the sentence

For all $a, b \in \mathbb{Z}$, if a|b then $b + 5a^2$ is not prime.

- (a) Is the sentence P true? If so, provide a proof. If not, provide a counterexample.
- (b) Is the sentence Q true? If so, provide a proof. If not, provide a counterexample.
- 16. Use the prime factorizations

$$3,219,398 = 2 \cdot 7^3 \cdot 13 \cdot 19^2$$
 and $158,184 = 2^3 \cdot 3^2 \cdot 13^3$

to find gcd(3,219,398, 158,184). Explain your reasoning.

17. Let $a \in \mathbb{N}$ and let p be a prime number. Prove that if $p|a^2$, then p|a. [HINT: Consider the prime factorizations of a and a^2 .] 18. (a) Fill in the blanks: According to the division algorithm, when we divide an integer n by 5, we obtain unique integers $q, r \in \mathbb{Z}$ such that

and

$$\underline{\quad} \leq r \leq \underline{\quad}.$$

(b) Use the statement in part (a) to prove the following: For any integer $a \in \mathbb{Z}$, if $5|a^2$, then 5|a.

[HINT: Apply part (a) to $n = a^2$ and to n = a.]

- (c) Give an example of an integer a such that $8|a^2$ but $8\nmid a$.
- (d) According to part (b), the implication

$$5|a^2 \Rightarrow 5|a \tag{(\star)}$$

is **true** for every $a \in \mathbb{Z}$. But part (c) shows that the similar implication

$$8|a^2 \Rightarrow 8|a \tag{**}$$

is **false**, at least for some integers a.

We might try to adapt the proof of (\star) from part (b) into a similar proof of $(\star\star)$. Of course, this necessarily will fail, because $(\star\star)$ is false. What, specifically, goes wrong when you do this?

- 19. Give examples to prove the following statements.
 - (a) There exist irrational numbers x and y such that x + y is irrational.
 - (b) There exist irrational numbers x and y such that x + y is rational.
 - (c) There exist irrational numbers x and y such that xy is irrational.
 - (d) There exist irrational numbers x and y such that xy is rational.

20. Let $x, y \in \mathbb{R}$. Prove the following.

- (a) If x and y are rational, then x + y is rational.
- (b) If x and y are rational, then xy is rational.
- (c) If y is rational and $y \neq 0$, then 1/y is rational.
- (d) If x and y are rational and $y \neq 0$, then x/y is rational.
- (e) If x is rational and y is irrational, then x + y is irrational.
- (f) If $x \neq 0$ is rational and y is irrational, then xy is irrational.
- (g) If y is irrational, then 1/y is irrational. (Why must $y \neq 0$ be true?)
- (h) If $x \neq 0$ is rational and y is irrational, then x/y is irrational.

21. Prove the following.

[HINT: Use the fact that any rational number can be written in lowest terms.]

- (a) $\sqrt{2}$ is irrational.
- (b) $\sqrt{3}$ is irrational.
- (c) $\sqrt{6}$ is irrational.
- (d) $\sqrt{2} + \sqrt{3}$ is irrational.
- 22. Let's prove that $\sqrt{24}$ is irrational.

Suppose that $a^2 = 24b^2$ (equivalently, $\left(\frac{a}{b}\right)^2 = 24$) for some $a, b \in \mathbb{N}$. We will derive a contradiction.

(a) By the Fundamental Theorem of Arithmetic, a has a unique prime factorization. Write it as

$$a = p_1^{e_1} \cdots p_k^{e_k},\tag{(\star)}$$

where p_1, \ldots, p_k are distinct primes (i.e., $p_i \neq p_j$ when $i \neq j$) and the exponents e_i are positive integers.

Use (\star) to write the unique prime factorization of a^2 .

- (b) Describe the unique prime factorization of $24b^2$. [HINT: Similar to part (a), start by writing the unique prime factorization of b.]
- (c) Use the equality $a^2 = 24b^2$ and your prime factorizations from parts (a) and (b) to get a contradiction. Conclude that no such $a, b \in \mathbb{N}$ exist.