Logical Sentences

A logical sentence is a sentence with a nell-defined truth value (True or False).

Ex: "OSU is in Columbus, OH." (T) "2+2 = 5." (F) "x > 7" (Depends on variable x)

Non-Ex: "Go ontside."

"Are you cold?"

It is clear from these examples that logical sentences require precise definitions.

thing to do with differential/integral culculus Propositional Calculus

How to "build" new sentences from existing ones?

Use logical connectives.

Logical Connective	Symbol	Plain English
negation		"no+"
conjunction	^	"and"
disjunction	V	"or" (inclusive)
implication	\Rightarrow	"if-then"
bicon ditional		"if and only if"

Let P, Q, R, ... stand for sentences.

Ex: P = "It is Friday."

Q = "We're having fun in Math 3345."

¬P, PAQ, P⇒Q, e+c.

The negation $\neg P$ has the opposite truth value as P. So if P is true, then $\neg P$ is fulse, if P is false, then $\neg P$ is true.

Summarize this in a truth table:

Ex: What is ¬(¬P)? Make another truth tuble:

So P and ¬(¬P) always have the same furth value. We say they are logically equivalent and write

$$P \equiv \neg (\neg P)$$
.
"is logically equivalent to"

2 Conjunction: 1 mems "and"

PAQ is the exactly when both P and Q are true.

P	Q	PAQ
T	7	T
T	F	F
F	T	F
F	F	F

Ex: 2 is even and 3 is odd. T 2 is even and 3 is even. F 2 is odd and 3 is odd. F