Warm-Up: Use induction to show

$$
1+3+3^{2}+\cdots+3^{n}=\frac{3^{n+1}-1}{2}
$$

for every non-negative integer n.

Parity
Def: Let $n \in \mathbb{Z}$ be an integer. Then
(1) n is even if $n=2 k$ for some $k \in \mathbb{Z}$.
(2) n is odd if $n=2 l+1$ for some $l \in \mathbb{Z}$

These are \exists statements!

Thu: For any $x, y \in \mathbb{Z}$,
(1) If x is odd and y is odd, then $x+y$ is even.
(2) If x is even and y is odd, then $x+y$ is odd.
(3) If x is even and y is even, then $x+y$ is even.
Proof: (1) Suppose x and y are both odd. Then there exist integers k and
l such that

$$
\text { and } \begin{aligned}
& x=2 k+1 \\
& y=2 l+1
\end{aligned}
$$

Thus,

$$
\begin{aligned}
x+y & =(2 h+1)+(2 l+1) \\
& =2(k+l+1) .
\end{aligned}
$$

Since $k+l+\mid \in \mathbb{Z}$, this proves $x+y$ is even.
(2) and (3) left as exercises.

Thu: Every integer is even or odd.
Proof: Let $P(n)$ be " n is even or n is odd."
We will first prove $(\forall n \in \mathbb{N}) P(n)$ by induction.

Base Case: When $n=1$, we have

$$
1=2(0)+1
$$

proving that 1 is odd. So $P(1)$ is true.
Inductive Step: Let $n \in \mathbb{N}$ and assume $P(n)$ is true. That is, n is even or n is odd.

Case 1: n is even. Then $n=2 k$ for some $k \in \mathbb{Z}$. Thus,

$$
n+1=2 k+1
$$

is odd, proving $P(n+1)$ is true.

Case 2: n is odd. Then $n=2 l+1$ for some $l \in \mathbb{Z}$. Thus,

$$
\begin{aligned}
n+1=(2 l+1)+1 & =2 l+2 \\
& =2(l+1) .
\end{aligned}
$$

Since $l+1 \in \mathbb{Z}$, this shows $n+1$ is even. So $P(n+1)$ is true.

Thus, $P(n+1)$ is true in both cases. This completes the inductive step.
We conclude that $P(n)$ is true for each $n \in \mathbb{N}$.

It remains to prove $P(n)$ for $n \leqslant 0$.

Zero: $O=2(0)$ is even, so $P(0)$ is true.

Negatives: Every negative integer is of the form $-n$, where $n \in \mathbb{N}$. Thus, it suffices to prove

$$
P(n) \Rightarrow P(-n)
$$

for each $n \in \mathbb{N}$.
So assume $P(n)$ is true.
Case 1: n is even. Then $n=2 k$ for some $k \in \mathbb{Z}$. Thus,

$$
-n=-2 k=2(-k)
$$

is even, since $-k \in \mathbb{Z}$.
Case 2: n is odd. Then $n=2 l+1$ for some $l \in \mathbb{Z}$. Now,

$$
\begin{aligned}
-n=-(2 l+1) & =-2 l-1 \\
& =2(-l-1)+1 .
\end{aligned}
$$

Since $-l-1 \in \mathbb{Z}$, this shows $-n$ is odd

Thus, $P(-n)$ is true in both cases.

Since $P(n)$ and $P(n) \Rightarrow P(-n)$ are both true for every, $n \in \mathbb{N}$, we conclude $P(-n)$ is true for every $n \in \mathbb{N}$.

