

These are 3 statements!

Thum: For any
$$x, y \in \mathbb{Z}$$
,
() If x is odd and y is odd, then
x+y is even.
(2) If x is even and y is odd, then
x+y is odd.
(3) If x is even and y is even, then
x+y is even.
Proof: (1) Suppose x and y are both odd.
Then there exist integers k and
 λ such that
 $x = 2k+1$
and $y = 2\ell+1$
Thus,
 $x+y = (2k+1) + (2\ell+1)$
 $= 2(k+\ell+1)$.
Since $k+\ell+1 \in \mathbb{Z}$, this proves x+y is even
(2) and (3) left as exercises.

is odd, proving P(n+1) is true.

$$\frac{Case \ 2: n is odd. Then n=2l+1}{for some l \in \mathbb{Z}. Thus,}$$

$$n+l = (2l+1)+1 = 2l+2$$

$$= 2(l+1).$$
Since $l+l \in \mathbb{Z}$, this shows
$$n+1 \ is even. \ So \ P(n+1) \ is true.$$
Thus, $P(n+1)$ is true in both
cases. This completes the inductive
step.
We conclude that $P(n)$ is true
for each $n \in M$.

It remains to prove P(n) for $n \leq 0$.

$$\frac{\text{Zero}}{\text{is frue}}$$
: $O=2(0)$ is even, so $P(0)$ is true.

Negatives: Every negative integer
is of the form -n, where nell.
Thus, it suffices to prove

$$P(n) \Longrightarrow P(-n)$$

for each nell.
So assume $P(n)$ is true.
Case 1: n is even. Then n=2h
for some keZ. Thus,
 $-n = -2h = 2(-h)$
is even, since $-h \in \mathbb{Z}$.
Case 2: n is odd. Then n=2l+1
for some $l \in \mathbb{Z}$. Now,
 $-n = -(2l+1) = -2l - 1$
 $= 2(-l-1) + 1$.
Since $-l - l \in \mathbb{Z}$, this shows -n
is odd

Thus, P(-n) is true in both cases.

Since P(n) and $P(n) \Rightarrow P(-n)$ are both true for every nEN, ne conclude P(-n) is true for every nelV.