Warm-Up: Let $x, y \in \mathbb{Z}$. Prove that if $x+y$ is odd, then x is odd or y is odd.

Last time: Every integer is odd or

Is there any integer which is
both even and odd?
This would imply 1 is even!
(Or, equivalently, $\frac{1}{2} \in \mathbb{Z}$.)
How do we know this isn't so?

Axioms for the integers
Axioms 1-10 on handout

- Every fact you know (or don't) abort integers follows from these axioms.
- For the moment, let's imagine that we only know these axioms.

What can we deduce?
For example, it's not even clear that \mathbb{N} is equal to $\{1,2,3, \ldots\}$.

Basic facts about integers
What can we deduce from the axioms?
Lemma 1: Let $a, b, c \in \mathbb{Z}$. If $a+b=a+c$, then $b=c$. [Additive Cancellation Property]

Proof: Let $a, b, c \in \mathbb{Z}$ and suppose $a+b=a+c$.
Then

$$
-a+(a+b)=-a+(a+c)
$$

By Axiom 3 (Associativity),

$$
(-a+a)+b=(-a+a)+c \text {. }
$$

By Axiom 6 (Additive Inverses), we get

$$
0+b=0+c
$$

and by Axiom 5 (Additive Identity),

$$
b=c
$$

as desired.

Lemma 2 (Uniqueness of Additive Inverses).
Let $a, b \in \mathbb{Z}$. If $a+b=0$, then $b=-a$.
Proof: Let $a, b \in \mathbb{Z}$ and suppose $a+b=0$. Since $a+(-a)=0$ also (Axiom 6), we have

$$
a+b=a+(-a) .
$$

By the previous Lemma, we may cancel the a from both sides to get $b=-a$, as desired.

Lemma 3: For any $a \in \mathbb{Z}, a \cdot 0=0$.
Proof: Let $a \in \mathbb{Z}$. Then

$$
\begin{align*}
a \cdot 0 & =a(0+0) & (A x i o m ~ 5) \\
& =a \cdot 0+a \cdot 0 . & (A x i o m ~ 4)
\end{align*}
$$

Also, $a \cdot 0=a \cdot 0+0$ by Axiom 5 .
Thus,

$$
a \cdot 0+a \cdot 0=a \cdot 0+0 .
$$

By cancellation, $a \cdot 0=0$.

