Warm-Up: Let x, y & Z. Prove that if x+y is odd, then x is odd or y is odd. Last time: Every integer is odd or even. Is there any integer which is both even and odd? This would imply 1 is even!

 $(Or, equivalently, \frac{1}{2} \in \mathbb{Z})$

How do ne know this isn't so?

Basic fracts abort integers
What can we deduce from the axioms?
Lemma I: Let
$$a, b, c \in \mathbb{Z}$$
. If $a+b=a+c$,
then $b=c$. [Additive Concellation Property]
Proof: Let $a, b, c \in \mathbb{Z}$ and suppose $a+b=a+c$.
Then
 $-a + (a+b) = -a + (a+c)$.
By Axiom 3 (Associativity),
 $(-a+a) + b = (-a+a) + c$.
By Axiom 6 (Additive Inverses),
we get
 $0+b = 0+c$,
and by Axiom 5 (Additive Identity),
this becomes
 $b=c$,
as desired.

Lemma 2 (Uniqueness of Additive Inverses).
Let
$$a, b \in \mathbb{Z}$$
. If $a+b=0$, then $b=-a$.
Proof: Let $a, b \in \mathbb{Z}$ and suppose $a+b=0$.
Since $a+(-a)=0$ also (Axiom 6),
we have
 $a+b=a+(-a)$.
By the previous Lemma, we may
cancel the a from both sides
to get $b=-a$, as desired.
Lemma 3: For any $a \in \mathbb{Z}$, $a \cdot 0 = 0$.
Proof: Let $a \in \mathbb{Z}$. Then
 $a \cdot 0 = a(0+0)$ (Axiom 5)
 $= a \cdot 0 + a \cdot 0$. (Axiom 4)
Also, $a \cdot 0 = a \cdot 0 + 0$ by Axiom 5.
Thus,
 $a \cdot 0 + a \cdot 0 = a \cdot 0 + 0$.
By cancellation, $a \cdot 0 = 0$.