

Now, Lemmas 4 and 5 together show that $(-1)\cdot(-1) = 1$. Indeed, $(-1)\cdot(-1) = -(-1)$ (Lemma 5) (Lemma 4) = |,

So far, néve only used Axioms 1-6. Axioms 7-10 concern the positive integers Note: We understand that N should the axioms, so we should refinin from assuming it to be true.

Positive Integers
Goal: Use Axioms 7-10 to show
$$N = \{1, 2, 3, ...\}$$

Axiom 7 simply tells us that N exists.
Define a**Axiom 8 tells as that N is closed under
t and .
Axiom 9 tells as there is a trichotomy:
Each a < Z satisfies exactly one of
. a < N < a > 0 "a is positive"
. a = 0
.-a < N < a < "a is negative"
Axiom 10 is mysterious...**

Lemma 7: For any
$$a, b \in \mathbb{Z}$$
, if $a \cdot b = 0$, then
 $a = 0$ or $b = 0$.

Proof: Homework 9.
Note: Prove the contrapositive:
If
$$a \neq 0$$
 and $b \neq 0$, then $a \cdot b \neq 0$.
By trichotomy, $X \neq 0$ if and
only if
 $\cdot X \in \mathbb{N}$ (i.e. $X < 0$).
Now, consider cases.

Let's use this to prove: <u>Thm 8</u>: For any a, b, c & With a #0, if a.b = a.c, then b=c. [Multiplicative Cancellation]

$$\frac{Proof}{Let} = a, b, c \in \mathbb{Z} \quad \text{with} \quad a \neq 0.$$

$$Suppose \quad a \cdot b = a \cdot c. \quad \text{Then}$$

$$a \cdot b - a \cdot c = 0$$

$$a \cdot (b - c) = 0.$$

By the Lemma, a=0 or b-c=0. But $a \neq 0$, so b-c=0. That is, b=c.

Note: No division regnired! (And no division defined in Z.)