An element
$$a \in S$$
 is the smallest element
of S if $a \leq x$ for all $x \in S$.
In symbols: $(\forall x \in S)(a \leq x)$

 $\frac{Observation}{Observation}: A smallest element in S, if it exists, must be unique:$ $<math>(\forall x \in S)(a \leq x)$ and $(\forall x \in S)(b \leq x)$ imply $a \leq b$ and $b \leq a$, so a = b.

Thm II: The integer I is the smallest element of N.

Proof: First, ne know N has a smallest element by the Well-Ordening Principle (Axiom 10). Call it a & N. We also know I & N (Lemma 6). So a & I, because a is the smallest element in N.

To get a contradiction, assume that $a \neq 1$. Then a < 1. Because $a \in IN$ (i.e. a > 0), we can multiply both sides of a < I by a to get $a \cdot a \leq | \cdot a$ (Lemma 10) or $a^2 \leq a$.

But $a^2 = a \cdot a \in \mathbb{N}$ by Positive Closure (Axiom 8), so this contradicts a being the smallest element in \mathbb{N} . Thus, a=1, as desired.

So
$$IN = \{1, 2, 3, 4, ...\}$$

Now, by Trichotomy (Axion 9), He only other integers are the additive inverses of elements of N.

Thus,
$$Z = \{ ..., -3, -2, -1, 0, 1, 2, 3, ... \}$$
.

Note: The handout shows this slightly more rigorously, by proving the Principle of Mathematical Induction.

Divisibility
Def: Let d and n be integers. We say
d divides n if there exists an integer k
such that n=dk.
Note on definitions: A definition is a
$$\iff$$
 statement, but
it is often written as a \implies statement.
So
d divides n \iff ($\exists k \in \mathbb{Z}$)(n=dk)
Notation: d | n means "d divides n"
Ex: 21n \iff n=2k for some $k \in \mathbb{Z}$
 \iff n is even.
Ex: 31n \iff n=3k for some $k \in \mathbb{Z}$
 s_{0} 3 divides 3 (3=3:1)
 $= -6$ (-(+3:(20))
 $= -6$ (0=30)
Def: When d | n, we say d is a divisor
of n and n is a multiple of d.