Goal: Check that the axioms for \mathbb{Z} define the integers we think we know, ie.,

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

The key is Axiom 10, the only is one we haven't used yet. It is

The Well-Ordering Principle
Any non-empty subset of \mathbb{N} has a smallest element.

An element $a \in S$ is the smallest element of S if $a \leqslant x$ for all $x \in S$.

In symbols: $(\forall x \in S)(a \leq x)$

Observation: A smallest element in S, if it exists, must be unique:

$$
(\forall x \in S)(a \leq x) \text { and }(\forall x \in S)(b \leq x)
$$

imply $a \leq b$ and $b \leq a$, so $a=b$.

Thu II: The integer \mathcal{I} is the
smallest element of \mathbb{N}.

Proof: First, we know \mathbb{N} has a Smallest' element by the Well-Ordering
Principle (Axiom 10). Principle (Axiom 10).
Call it $a \in \mathbb{N}$.
We also know $1 \in \mathbb{N}$ (Lemma 6). So $a \leq 1$, becanse a is the smallest element in \mathbb{N}.

To get a contradiction, assume that $a \neq 1$. Then $a<1$.

Because $a \in \mathbb{N}$ (i.e. $a>0$), we can multiply both sides of a<l by a to get

$$
a \cdot a<1 \cdot a
$$

or

$$
a^{2}<a .
$$

But $a^{2}=a \cdot a \in \mathbb{N}$ by Positive Closure (Axiom 8), so this contradicts a being the smallest element in \mathbb{N}.

Thus, $a=1$, as desired.

This, actually completes our goal! Why?
$\cdot 0,1 \in \mathbb{Z}$ by Axiom 5

- $1 \in \mathbb{N}$ by Lemma 6
- Thus,

$$
\begin{aligned}
& 1+1=2 \\
& 2+1=3 \\
& 3+1=4
\end{aligned}
$$

are in \mathbb{N} by Axiom 8.
So \mathbb{N} contains $\{1,2,3,4, \ldots\}$.
If there were another $x \in \mathbb{N}$ not on this list, then ne would have

$$
n<x<n+1
$$

for some $n \in \mathbb{N}$. But then $0<{\underset{\epsilon \mathcal{Z}}{x-n}\left(A x x^{\circ}=1 \text { 1) }\right.}_{x}$ contradicting The 11 .

So $\mathbb{N}=\{1,2,3,4, \ldots\}$.

Now, by Trichotomy (Axiom 9), the only other integers are the additive inverses of elements of \mathbb{N}.

Thus, $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$.

Note: The handout shows this slightly move rigorously, by proving tIne Production.

Divisibility
Def: Let d and n be integers. We say d divides n if there exists an integer k such that $n=d k$.

Note on definitions: A definition is a \Leftrightarrow statement, but it is often written as $a \Rightarrow$ statement.
So
d divides $n \Leftrightarrow(\exists k \in \mathbb{Z})(n=d k)$
Notation: $d \mid n$ means " d divides n "
Ex: $21 n \Leftrightarrow n=2 k$ for some $k \in \mathbb{Z}$ $\Leftrightarrow n$ is even.

Ex: $31 n \Leftrightarrow n=3 k$ for some $k \in \mathbb{Z}$

Def: When d / n, we say d is a divisor of n and n is a multiple of d.

