Warm-Up: Let d, n, m EZ. Prove that if
d n and d lm, then d l (n+m).
Warning: d n is the sentence "I divides n"
d/n is the number d
Note: When d to,
d ln is the
$$\iff$$
 n = d k for some $k \in Z$
 $\iff \frac{\pi}{d}$ is an integer
We usually avoid division, as that can
take us out of the integers.
Existing the divides Q have a Q = 100

Ex: Every integer d divides 0, because $0 = d \cdot 0$. • 1 divides every integer n, because $n = 1 \cdot n$. • 0 only divides itself, because $n = 0 \cdot k \implies n = 0$.

Then: Let
$$d, n \in \mathbb{Z}$$
. If $d \ln d, d \ln (-d) \ln d$.
Proof: Suppose $d \ln d$. Then there exists $k \in \mathbb{Z}$ such that $n = dk$. Then
 $n = [(-1) \cdot (-1)] \cdot dk = (-d)(-k)$
Since $-k \in \mathbb{Z}$, this shows $(-d) \ln d$.

Ex: The divisors of 15 are $\pm 1, \pm 3, \pm 5, \pm 15$.

B

ie. n?d.

Thm: For any a, b, c & N, ① ala. [Reflexivity] ② If alb and bla, then a = b. [Antisymmetry] ③ If alb and bla, then alc. [Trunsitivity] Proof: Hur 10.

Another partial order is 5.