The Enclidean Algorithm
Lemma: Let a, b, q, r eZ such that

$$a = bq + r$$
.
Then for all de M, d is a common divisor of a and b
if and only if d is a common divisor of b and r.
In particular, $gcd(a,b) = gcd(b,r)$.
Proof: HW 12.

Algorithm (Euclidean): INPUT:
$$a, b \in N$$
 with $a \ge b$.
OUTPUT: $gcd(a, b)$.
Set $r_{-1} = a$ and $n = 0$.
 $r_0 = b$
While $r_n \neq 0$:
• Divide r_{n-1} by r_n to get
 $r_{n-1} = r_n q_{n+1} + r_{n+1}$
• If $r_{n+1} = 0$, ontput r_n and STOP.
• Else, increment $n \rightarrow n+1$.

 $E_x: a = 270, b = 192$

$$270 = 192(1) + 78$$

$$192 = 78(2) + 36$$

$$78 = 36(2) + 6$$

$$36 = 6(6) + 0$$

 $(r_{-1} = 270)$ $r_{0} = 192)$ $q_{1} = 1, r_{1} = 78$ $q_{2} = 2, r_{2} = 36$ $q_{3} = 2, r_{3} = 6$ $q_{4} = 6, r_{4} = 0$

STOP and ontput 6. So gcd(270, 192) = 6.

Proof of termination: By the division algorithm, r-1 2 ro, > ri > rz > ··· > 0 a > b is given

$$\frac{Proof of correctness}{r_{-1} = r_{0}q_{1} + r_{1}}$$

$$r_{0} = r_{1}q_{2} + r_{2}$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_{n} + r_{n} + C$$

$$r_{n-1} = r_{n}q_{n+1} + O$$

$$gcd(a,b) = gcd(r_{-1}, r_{0})$$

$$= gcd(r_{0}, r_{1})$$

$$= gcd(r_{1}, r_{2})$$

$$\vdots$$

$$= gcd(r_{n-1}, r_{n})$$

$$= gcd(r_{n}, 0) = r_{n}$$
by the Lemma.

Soon, we'll prove
Thm: Let
$$a, b \in \mathbb{Z}$$
, not both zero.
Set $d = \gcd(a, b)$. Then there exist $x, y \in \mathbb{Z}$
such that
 $ax + by = d$.

 \checkmark

Ex:
$$a = 270$$
, $b = 192$ (so $d = 6$ by above)
From He Euclidean algorithm, we get
 $6 = 78 - 36(2)$
 $= 78 - [192 - 78(2)] \cdot 2 = 78(5) + 192(-2)$
 $= [270 - 192] \cdot 5 + 192(-2)$
 $= 270(5) + 192(-7)$.

So
$$x=5$$
, $y=-7$ solves
270x + 192y = 6.