Ex:
$$a = 616$$
, $b = 252$. $gcd(616, 252) = 28$.
Then to solve
 $616x + 252y = 28$,
• Run the Euclidean algorithm
 $616 = 252 + 112$
 $252 = (112 \cdot 2 + 28)$ Last non-zero remainder
 $12 = 28 \cdot 4 + 0$

• Solve for each non-zero remainder
()
$$112 = 616 - 252(2)$$

() $28 = 252 - 112(2)$
• Start from the bottom, and substitute up
() $28 = 252 - 112(2)$
() 1
 $= 252 - (616 - 252(2)) \cdot (2)$
 $= 616(-2) + 252(5)$
So $x = -2, y = 5$ is a solution.

Proof: It is enough to prove the theorem for
$$a, b \in \mathbb{N}$$

ONTT. If $a < 0$, then $d = a, cd(a, b) = a, cd(-a, b)$,
and if $x, y \in \mathbb{Z}$ solves
 $(-a)x + by = d$
then $a(-x) + by = d$.
Sim. if $b < 0$.

• If
$$a=0$$
 and $b>0$, then $gcd(0,b)=b$ and
 $0x + by = b$ is solved by $y=1$ (and any $x \in \mathbb{Z}$).
Sim. if $b=0$.

So we assume
$$a, b \in N$$
 and write
 $d = gcd(a, b)$. Let $P(n)$ be the sentence

"If
$$a \le n$$
 and $b \le n$, then there exist
x, y $\in \mathbb{Z}$ such that $ax + by = d$."

Base Cuse: If
$$a \le 1$$
 and $b \le 1$, then
 $a = b = 1$ (since $a, b \in IN$). So $d = gcd(1,1) = 1$
and
 $1 \times + 1y = 1$
is solved by taking $x = 1$ and $y = 0$.
Thus, P(1) is true.

Conse Z: If
$$a = n+1=b$$
, Hen $d=n+1$
and
 $(n+1)x + (n+1)y = (n+1)$
is solved by $x=1$ and $y=0$.

Case 3: One of
$$a, b$$
 is $n+1$, and the
other is at most n . Without
loss of generality, $a = n+1$
and $b \le n$.

By the division algorithm, we have

$$a = qb + r$$

where $0 \le r \le b - 1$. Then $r \le n$.
Also, $gcd(b,r) = gcd(a,b) = d$ by
HW 17.
Thus, because $P(a)$ is true, there
exist integers $z, w \in \mathbb{Z}$ such that
 $bz + rw = d$.
Making the substitution $r = a - qb$, we
 get
 $bz + (a - qb)w = d$
or
 $aw + b(z - qw) = d$.
That is, $x = w$ and $y = z - qw$
are integers satisfying
 $ax + by = d$.

Congruence
Def: Let
$$m \in N$$
 and $a, b \in Z$. We say a is
congruent to b modulo m if $m | (b-a)$.
We write this as $a \equiv b \mod m$.

Ex: $\cdot |0 = 4 \mod 3$ be cause $3 | (4-10)$
Nate: 10 and 4 both lence a remainder of 1 when
divided by 3.
 $\cdot |1 = 23 \mod 3$ because $3 | (23-11)$
 $\cdot 3 \equiv 0 \mod 3$ " $3 | (0-3)$

<u>Proof</u>: Use the division algorithm to write $a = mq_1 + r_1$ $b = mq_2 + r_2$

where $q_1, q_2, r_1, r_2 \in \mathbb{Z}$ and $O \leq r_1 \leq m - 1$, $O \leq r_2 \leq m - 1$.

$$(=) Suppose \quad a \equiv b \mod m. \text{ Then } m \text{ divides}$$
$$b-a = (mq_2 + r_2) - (mq_1 + r_1)$$
$$= m(q_2 - q_1) + (r_2 - r_1)$$
Since m divides b-a and m(q_2 - q_1), m

must divide

$$(b-a) - m(q_2 - q_1) = r_2 - r_1$$

But $-(m-1) \leq r_2 - r_1 \leq m-1$, so the only possibility is that $r_2 - r_1 = 0$, i.e. $r_1 = r_2$.

(<=) Conversely, suppose
$$r_1 = r_2$$
. Then $r_2 - r_1 = 0$,
so $b - a = m(q_2 - q_1)$
is divisible by m. That is,
 $a = b \mod m$.