Warm-Up: Find integers x and y such that
$$58 \times -13 = 1$$

Last time:
$$m \in IN$$
, $a, b \in \mathbb{Z}$
 $a \equiv b \mod m \iff a$ and b leave the
 $a \equiv b \mod m \iff same remainder$ when
 $divided by m$.

(a) There is a unique integer r such that 0≤r≤m-1 and a=r mod m. Specifically, r is the remainder left upon dividing a by m.
(b) a = 0 mod m if and only if m | a.

Ex: m=8, a=29. Then 29 = 5 mod 8. Warning: "mod m" has no meaning outside of the sentence $a \equiv b \mod m$. Properties Thm: Let mEN. (a) For all a∈Z, a = a mod m [Reflexive] (b) For all a, b ∈ Z, if a = b mod m,
 then b = a mod m. [Symmetric] (c) For all a, b, c ∈ Z, if a = b mod m and b = c mod m, then a = c mod m [Transitive]

Proof: HW 14.

Thm: Let
$$m \in N$$
 and $a, b, c, d \in \mathbb{Z}$.
Suppose $a \equiv b \mod m$ and $c \equiv d \mod m$.
Then
(a) $a+c \equiv b+d \mod m$.
(b) $a-c \equiv b-d \mod m$.
(c) $ac \equiv bd \mod m$.

Proof: HW 14.