Warm-Up: Find integers x and y such that

$$
58 x-13 y=1
$$

Last time: $m \in \mathbb{N}, a, b \in \mathbb{Z}$
$a \equiv b \quad a$ and b leave the $C_{m \mid(b-a)} \rightleftharpoons$ same remainder

Cor: Let $a \in \mathbb{Z}$ and $m \in \mathbb{N}$.
(a) There is a unique integer r such that $0 \leq r \leq m-1$ and $a \equiv r \bmod m$. Specifically, r is the remainder left upon dividing a by m.
(b) $a \equiv 0 \bmod m$ if and only if $m \mid a$.

Ex: $m=8, \quad a=29$.
Then $29 \equiv 5 \bmod 8$.

Warning: "mod m" has no meaning outside of the sentence $a \equiv b$ mod m.

Properties
Thu: Let $m \in \mathbb{N}$.
(a) For all $a \in \mathbb{Z}, a \equiv a \bmod m$ [Reflexive]
(b) For all $a, b \in \mathbb{Z}$, if $a \equiv b \bmod m$, then $b \equiv a \bmod m$.
[Symmetric]
(c) For all $a, b, c \in \mathbb{Z}$, if $a \equiv b \bmod m$ and $b \equiv c \bmod m$, then $a \equiv c \bmod m$ [Transitive]

Proof: HW 14.

Together, these properties say that congruence $\bmod m$ is an equivalence relation.

Equivalence relations give a notion of "sameness."
Other examples: - Equality (of integers, real numbers, functions,...)

- Logical equivalence of sentences
- Congruence of triangles
- Similarity of triangles

The: Let $m \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$.
Suppose $a \equiv b \bmod m$ and $c=d \bmod m$. Then
(a) $a+c \equiv b+d \bmod m$.
(b) $a-c \equiv b-d \bmod m$.
(c) $a c \equiv b d \bmod m$.

Proof: HWN 14.

