- Ex: What is the remainder when 22.19 is divided by 3?
- Recall: Remainder is the unique $r \in \mathbb{Z}$ such that $0 \le r \le 2$ and $22.19 \equiv r \mod 3$.

So	22.19	3	٠l	mod	3
		•••	I	mod	3,

22 = 1 mod 3, 19 = 1 mod 3,	
So 22.19 = 1.1 mod 3 = 1 mod 3,	
meaning 22.19 leaves a remainder of 1 ch divided by 3.	en

Ex: What is the remainder then

$$(754 + 1083) \cdot 17$$

is divided by 5?
 $(754 + 1083) \cdot 17 \equiv (4 + 3) \cdot 2 \mod 5$
 $\equiv 7 \cdot 2 \mod 5$
 $\equiv 2 \cdot 2 \mod 5$
 $\equiv 4 \mod 5$

So the remainder is 4.

Ex: When m=2, every $a \in \mathbb{Z}$ sufficies exactly one of $a \equiv 0 \mod 2 \iff a$ is even $a \equiv 1 \mod 2 \iff a$ is odd So when we do arithmetic mod 2, we can replace every integer by 0 or 1. We have $\bigcirc + \bigcirc = \bigcirc$ $0 \cdot 0 = 0$ 0 + 1 = 1 $0 \cdot 1 = 0$ | + () = | $| \cdot 0 = 0$ 1 + 1 = 2 = 0 mod 2 | · | = | So we have the following + and . tables: modz 0 1 0 0 0 1 0 1

This recovers

+	even	old		,	even	odd
even	even	odd	er	ien	even	even
odd	odd	even	0	LL	even	odd
				l		

Note: Can make similar tables for arithmetic modulo 3, 4, 5, ...

Thm: Let mEIN and a, b = Z. If a=b mod m then aⁿ = bⁿ mod m for every nelN. Proof: Let P(n) be "a" = b" mod m." We'll use induction. Base Case: P(1) is given. <u>Inductive Step</u>: Let $n \in \mathbb{N}$ and suppose P(n) is true. That is, $a^n \equiv b^n \mod m$. Since a = b mod m, ne get $a^{n} \cdot a \equiv b^{n} \cdot b \mod m$ i.e., aⁿ⁺¹ = 6ⁿ⁺¹ mod m. So P(n+1) is tme. Thus, P(n) is true for all nEN by P.MI.

Ex: What is the remainder when 91⁰⁰ is divided by 3? Since 91 = 1 mod 3, we have 91'00 = 1'00 mod 3 = 1 mod 3. So the remainder is 1. Ex: What is the remainder den 92" is divided by 3? Similarly, $92 \equiv 2 \mod 3$, so 92¹⁰⁰ = 2¹⁰⁰ mod 3. Now, $2^2 \equiv 1 \mod 3$, so $2^{100} \equiv (2^2)^{50} \mod 3$ $\equiv 1^{50} \mod 3$ = 1 mod 3. Thus, the remainder is 1.

Ex: What is the remainder when 258 so is drided by 5? Since 258 = 3 mod 5, we have $258^{50} = 3^{50} \mod 5.$ N_{0} , $3^{4} = 81$, so $3^{4} = 1 \mod 5$. Write 50 = 4.12 + 2. (50 divided by 4) Then $3^{50} = 3^{4 \cdot 12 + 2} = (3^4)^{12} \cdot 3^2$

50

$$258^{50} \equiv 3^{50}$$

= $(3^{4})^{12} \cdot 3^{2} \mod 5$
= $1^{12} \cdot 9 \mod 5$
= 4 \mod 5.

The remainder is 4.