Ex: What is the remainder when 22.19 is divided by 3 ?

Recall: Remainder is the unique $r \in \mathbb{Z}$ such that $0 \leq r \leq 2$ and $22.19 \equiv r \bmod 3$.
$22 \equiv 1 \bmod 3,19 \equiv 1 \bmod 3$,
So $\quad 22.19 \equiv 1.1 \bmod 3$

$$
\equiv 1 \bmod 3,
$$

meaning 22.19 leaves a remainder of 1 chen divided by 3 .

Ex: What is the remainder when

$$
(754+1083) \cdot 17
$$

is divided by 5 ?

$$
\begin{aligned}
(754+1083) \cdot 17 & \equiv(4+3) \cdot 2 \bmod 5 \\
& \equiv 7 \cdot 2 \bmod 5 \\
& \equiv 2 \cdot 2 \bmod 5 \\
& \equiv 4 \bmod 5
\end{aligned}
$$

So the remainder is 4 .

Ex: When $m=2$, even g $a \in \mathbb{Z}$ satisfies exactly one of

- $a \equiv 0 \bmod 2 \Leftrightarrow a$ is even
- $a \equiv 1 \bmod 2 \Leftrightarrow a$ is odd

So when we do arithmetic $\bmod 2$, we can replace even integer by 0 or 1 .

We have

$$
\begin{array}{ll}
0+0=0 & 0 \cdot 0=0 \\
0+1=1 & 0 \cdot 1=0 \\
1+0=1 & 1 \cdot 0=0 \\
1+1=2 \equiv 0 \bmod 2 & 1 \cdot 1=1
\end{array}
$$

So we have the following + and. tables:

+		
$\bmod 2$	0	1
0	0	1
1	1	0

$\bmod z$	0	1
0	0	0
1	0	1

This recovers

| + | even odd |
| :---: | :---: | :---: |
| even | even odd |
| odd | odd even |

| - | even odd |
| :---: | :---: | :---: |
| even | even even |
| odd | even odd |

Note: Can make similar tables for arithmetic modulo $3,4,5, \ldots$

The: Let $m \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. If

$$
a \equiv b \bmod m
$$

then

$$
a^{n} \equiv b^{n} \bmod m
$$

for every $n \in \mathbb{N}$.
Proof: Let $P(n)$ be " $a^{n} \equiv b n \bmod m$." Well use induction.

Base Case: $P(1)$ is given.
Inductive Step: Let $n \in \mathbb{N}$ and suppose $P(n)$ is true. That is, $a^{n} \equiv b^{n} \bmod \mathrm{~m}$.

Since $a \equiv b \bmod m$, we get

$$
a^{n} \cdot a \equiv b^{n} \cdot b \bmod m,
$$

i.e., $a^{n+1} \equiv b^{n+1} \bmod m$. So $P(n+1)$ is time.

Thus, $P(n)$ is time for all $n \in \mathbb{N}$ by PoME.

Ex: What is the remainder when 91^{100} is divided by 3?

Since $91 \equiv 1 \bmod 3$, we have

$$
\begin{aligned}
91^{100} & \equiv 1^{100} \bmod 3 \\
& \equiv 1 \bmod 3 .
\end{aligned}
$$

So the remainder is 1 .

Ex: What is the remainder aden 92^{100} is divided by 3 ?

Similarly, $92 \equiv 2 \bmod 3$, so

$$
92^{100} \equiv 2^{100} \bmod 3
$$

Now, $2^{2} \equiv 1 \bmod 3$, so

$$
\begin{aligned}
2^{100} & \equiv\left(2^{2}\right)^{50} \bmod 3 \\
& \equiv 1^{50} \bmod 3 \\
& \equiv 1 \quad \bmod 3
\end{aligned}
$$

Thus, the remainder is 1 .

Ex: What is the remainder when 258^{50} is divided by 5?

Since $258 \equiv 3 \bmod 5$, we have

$$
258^{50}=3^{50} \bmod 5
$$

Now, $3^{4}=81$, so $3^{4} \equiv 1 \bmod 5$.
Write

$$
50=4 \cdot 12+2 . \quad(50 \text { divided by } 4)
$$

Then

$$
3^{50}=3^{4 \cdot 12+2}=\left(3^{4}\right)^{12} \cdot 3^{2},
$$

So

$$
\begin{aligned}
258^{50} & \equiv 3^{50} \\
& \equiv\left(3^{4}\right)^{12} \cdot 3^{2} \quad \bmod 5 \\
& \equiv 1^{12} \cdot 9 \quad \bmod 5 \\
& \equiv 4 \quad \bmod 5 .
\end{aligned}
$$

The remainder is 4 .

