(2) Every
$$n \in \mathbb{N}$$
 such that $n \ge 2$ can be written
uniquely as a product of primes, in the
following sense: Suppose that
 $n = p_1 p_2 \cdots p_r$ and $n = q_1 q_2 \cdots q_5$,
where p_1, p_2, \cdots, p_r and q_1, q_2, \cdots, q_5 are all
primes such that
 $p_1 \le p_2 \le \cdots \le p_r$ and $q_1 \le q_2 \le \cdots \le q_5$.
Then $r = s$ and $p_i = q_i$ for all $1 \le i \le r$.

We'll prove this soon.

If pl(x,...,xn), flen by P(n), plx; for some (≤i≤n, and we have the desired conclusion.

If plxnn, then we also have the desired conclusion.