Warm-Up: Make + and e tables for arithmetic modulo 4.

Primes Redux
Our goal is now to prove that every $n \in \mathbb{N}$ has a unique prime factorization.

Ex: $\quad 12=2^{2} \cdot 3, \quad 55=5 \cdot 11, \quad 140=2^{2} \cdot 5 \cdot 7$
Minor issue \#1: 1 is not a product of primes.
Solution: Ignore 1.
(Or view it as the "empty product".)
Minor issue \#2: What do we mean by "unique"?

$$
\text { Ex: } 140=2 \cdot 2 \cdot 5 \cdot 7=2 \cdot 5 \cdot 2 \cdot 7=7 \cdot 2 \cdot 5 \cdot 2=\ldots
$$

Solution: The factorization is unique up to reordaing.
Or, unique if we list the primes in increasing order.

The (Fundamental Theorem of Arithmetic)
(1) Every $n \in \mathbb{N}$ such that $n \geqslant 2$ a product of primes.
(2) Every $n \in \mathbb{N}$ such that $n \geqslant 2$ can be written uniquely as a product of primes, in the following sense: Suppose that

$$
n=p_{1} p_{2} \cdots p_{r} \quad \text { and } \quad n=q_{1} q_{2} \cdots q_{s} \text {, }
$$

where $p_{1}, p_{2}, \ldots, p_{r}$ and $q_{1}, q_{2}, \ldots, q_{s}$ are all primes such that

$$
p_{1} \leq p_{2} \leq \cdots \leq p_{r} \quad \text { and } \quad q_{1} \leq q_{2} \leq \cdots \leq q_{s} \text {. }
$$

Then $r=s$ and $p_{i}=q_{i}$ for all $1 \leq i \leq r$.

We'll prove this soon.

Thu (Division by a prime): Let p be a prime number. Then for all $x, y \in \mathbb{Z}$, if play then plo or ply.
ie.,

$$
x y \equiv 0 \bmod p \Rightarrow \text { or } \quad x \equiv 0 \bmod p
$$

Note: The requirement that p be prime is important!
Ex: 416.10 (sine $6.10: 60=4.15$), but 476 and 4110 .

Proof: Let p be a prime and $x, y \in \mathbb{Z}$.
Suppose ploy.
If $p l x$, then we are done.
So suppose płx. We must show that ply.
Since $p \nmid x, \operatorname{gcd}(p, x)=1$ (HW 13).

Thus, by the reverse Euclidean Algorithm, there exist $u, v \in \mathbb{Z}$ such that

$$
p u+x v=1
$$

Multiply by y to get

$$
p u y+x y v=y
$$

Since plpuy and play, we have ply, as desired.

Cor: Let p be a prime. For each $n \in \mathbb{N}$ and all $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{Z}$, if $p l\left(x_{1} x_{2}, \cdots x_{n}\right)$ then p divides at least one of $x_{1}, x_{2}, \ldots, x_{n}$.
Proof: Let $P(n)$ be the sentence
"For all $x_{1}, \ldots, x_{n} \in \mathbb{Z}$, if $p\left(x_{1} \cdots x_{n}\right)$ then p divides at least one of the x_{i}."

We will prove $P(n)$ holds for all $n \in \mathbb{N}$ by induction.

Base Case: $P(1)$ is automatically tome, since if $p \mid x_{1}$, then $p \mid x_{1}$

Inductive Step: Let $n \in \mathbb{N}$ and suppose $P(n)$ is true.

Let $x_{1}, \ldots, x_{n+1} \in \mathbb{Z}$ and suppose

$$
p \mid\left(x_{1} \cdots x_{n}\right) \cdot\left(x_{n-1}\right) .
$$

By the theorem on division by a prime, $p \mid\left(x_{1} \cdots x_{n}\right)$ or $p \mid x_{n+1}$.

If $p \mid\left(x_{1} \cdots x_{n}\right)$, then by $P(n), p \mid x_{i}$ for some $(\leq i \leq n$, and we have the desired conclusion.

If $p \mid x_{n+1}$, then we also have the desired conclusion.

In either case, $P(n+1)$ is true, completing the inductive step.

