Proof of FTA part 1 Let S be the set of all counterexamples to FTA1. That is, for ne IN, nes (=> n ≥ 2 and n is not equal to a product of primes. We nant to argue that FTAI is true, meaning S is empty. Suppose, to get a contradiction, that S is not empty. Then, by the Well-Ordening Axiom, there is a smallest element in S. Call it a. Since a?2, ne know there is some prime p such that pla.

Thus, a=pk for some keZ. Since a and p are both positive, so is k. So $k \ge 1$. If k=1, then a=p is prime. But then $a \notin S$, a contradiction. If k>1, then k>2 (since heZ) but k < pk = a (since $p \ge 2$). So k is smaller than a, the smallest element in S. Thus, $k \notin S$, meaning k is a product of primes. But then a = pk is a product of primes. So $a \notin S$, a contradiction.

WLOG,
$$p|q_1$$
. But p and q_1 are both
prime, so $p = q_1$. If $l \ge 2$, then
 $P = Pq_2 \cdots q_k$
So $l = q_2 \cdots q_k$.
But this is impossible, so $l = l$ and
 $n = p$
is the unique prime fractorization.

If
$$n = q_1 q_2 \cdots q_4$$
 is another prime
factorization, then since $p_1 | n_1$, we
have $p_1 | (q_1 \cdots q_2)$.
Similar to above, we deduce that
 p_1 is equal to one of the q_1 's.
 $WLOG$, $p_1 = q_1$.
Then $p_1 p_2 \cdots p_{k+1} = p_1 q_2 \cdots q_4$, so
 $p_2 \cdots p_{k+1} = q_2 \cdots q_4$.
But the left-hand side is a product
of k primes, so it has a unique prime
factorization by $P(k)$.
Thus, $l = k+1$ and, up to reordening,
the primes q_2, \dots, q_{k+1} are exactly
the primes p_2, \dots, p_{k+1} .

This proves P(k+1), completing the inductive step.