Proof of FTA part 1
Let S be the set of all counterexamples to FTA 1.
That is, for $n \in \mathbb{N}$,
$n \in S \Leftrightarrow n \geqslant 2$ and n is not equal to a product of primes.
We want to argue that FTA I is trine, meaning S is empty.
Suppose, to get a contradiction, that S is not amply. Then, by the Well-Ordering $A_{x i o m}$, there is a smallest element in S.

Call it a.
Since $a \geqslant 2$, we know there is some prime p such that ila.

Thus, $a=p k$ for some $k \in \mathbb{Z}$.
Since a and P_{b} are both positive, so is k. So $k \geqslant 1$.

If $k=1$, then $a=p$ is prime. But then $a \notin S$, a contradiction.
If $k>1$, then $k \geqslant 2$ (since $k \in \mathbb{Z}$) but $k<p k=a \quad($ since $p \geqslant 2)$.
So k is smaller than a, the smallest element in S. Thus, $k \notin S$, meaning k is a product of primes.
But then $a^{a}=p k$ is a product of primes. So $a \notin S$, a contradiction.

Proof of FTA part 2
Let $P(k)$ be the sentence
"Any integer $n \geqslant 2$ which is equal to a product of k primes has a unique prime factorization."
We will prove $P(k)$ is true for all $k \in \mathbb{N}^{\top}$ by induction.

Base Case: $k=1$. If n is a product of one prime, then $n=p$
is prime.
If $n=p=q_{1} q_{2} \cdots q_{l}$ is another factorization into primes q_{i}, then plquide, so by the corollary p divides one of the q.

WLOG, $p l q_{1}$. But p and q_{1} are both prime, so $p=q_{1}$. If $l \geqslant 2$, then
so

$$
\begin{aligned}
& p=p_{2} \cdots q_{l} \\
& 1=q_{2} \cdots q_{l} .
\end{aligned}
$$

But this is impossible, so $l=1$ and

$$
n=p
$$

is the unique prime factorization.

Inductive Step: Let $L \in \mathbb{N}$ and suppose $P(k)$ is true.
Now, let $n \in \mathbb{N}$ be such that

$$
n=p_{1} p_{2} \cdots p_{k+1}
$$

is a product of $k+1$ primes p_{i}

If $n=q_{1} q_{2} \cdots q_{l}$ is another prime factorization, then since $p_{1} \mid n$, we have $p_{1} \mid\left(q_{1} \cdots q_{l}\right)$.
Similar to above, we deduce that P_{1} is equal to one of the q_{i}^{\prime} s. FLOG, $p_{1}=q_{1}$.

Then $p_{1} p_{2} \cdots p_{k+1}=p_{1} q_{2} \cdots q_{l}$, so

$$
p_{2} \cdots p_{h+1}=q_{2} \cdots q_{l}
$$

But the left-hand side is a product of k primes, so it has a unique prime factorization by $P(k)$.

Thus, $l=k+1$ and, up to reordering, the primes q_{2}, \ldots, q_{k+1} are exactly the primes p_{2}, \ldots, p_{1+1}.
That is, n has a unique prime factorization.

This proves $P(k+1)$, completing the
inductive step. inductive step.

